Cold denaturation of myoglobin
- PMID: 3783710
- DOI: 10.1016/0022-2836(86)90017-3
Cold denaturation of myoglobin
Abstract
The stability of the structure of sperm whale metmyoglobin has been studied in various solutions, in the temperature range -8 degrees C to 100 degrees C, by scanning microcalorimetry, light absorption, circular dichroism, nuclear magnetic resonance spectroscopy and viscosimetry. It has been shown that in 10 mM-sodium acetate solutions (pH 3.5 to 3.9) the protein molecule undergoes a reversible conformational transition into a non-compact disordered state not only when the solution is heated above room temperature but also when it is cooled. In this state the protein does not have a tertiary structure, although it retains some residual ellipticity, which may be caused by the fluctuating alpha-helical conformation of the unfolded polypeptide chain. The disruption of the native protein structure both on cooling (cold-denaturation) and on heating (heat-denaturation) proceeds in an "all-or-none" manner, with a significant and similar increase of the protein heat capacity, but with inverse enthalpic and entropic effects: the enthalpy and entropy of the protein molecule decrease during cold-denaturation and increase during heat-denaturation.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
