Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986;19(4):519-30.
doi: 10.1080/15287398609530949.

Microbial transformation of 6-nitrobenzo[a]pyrene

Microbial transformation of 6-nitrobenzo[a]pyrene

G C Millner et al. J Toxicol Environ Health. 1986.

Abstract

The fungal metabolism of the potent mutagenic and carcinogenic nitropolycyclic aromatic hydrocarbon (nitro-PAH) 6-nitrobenzo[a]pyrene (6-NO2-BaP) was investigated. Cunninghamella elegans was incubated with 6-NO2-BaP for periods ranging between 1 and 7 d, and the metabolites formed were separated by high-performance liquid chromatography and identified by their UV-visible absorption, mass, and 1H nuclear magnetic resonance spectra. The results of our study indicate that C. elegans metabolized 6-NO2-BaP to glucoside and sulfate conjugates of 1- and 3-hydroxy 6-NO2-BaP and suggests that glycosylation and sulfation reactions may represent detoxification pathways in the fungal metabolism of nitro-PAHs. Experiments using [G3H]-6-NO2-BaP indicated that C. elegans metabolized 62% of 6-NO2-BaP within 168 h. Our data also indicated that the nitro group at the C-6 position of benzo[a]pyrene blocked metabolism at the regions peri to the nitro substituent (C-7, C-8 positions) and enhanced metabolism at the C-1 and C-3 positions. The ability of the fungus C. elegans to metabolize 6-NO2-BaP to biologically inactive compounds may have practical applications in the detoxification of nitro-PAH-contaminated wastes.

PubMed Disclaimer

LinkOut - more resources