Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Nov 7:575:111634.
doi: 10.1016/j.jtbi.2023.111634. Epub 2023 Oct 14.

Macrophage phenotype transitions in a stochastic gene-regulatory network model

Affiliations
Free article

Macrophage phenotype transitions in a stochastic gene-regulatory network model

Anna-Simone Josefine Frank et al. J Theor Biol. .
Free article

Abstract

Polarization is the process by which a macrophage cell commits to a phenotype based on external signal stimulation. To know how this process is affected by random fluctuations and events within a cell is of utmost importance to better understand the underlying dynamics and predict possible phenotype transitions. For this purpose, we develop a stochastic modeling approach for the macrophage polarization process. We classify phenotype states using the Robust Perron Cluster Analysis and quantify transition pathways and probabilities by applying Transition Path Theory. Depending on the model parameters, we identify four bistable and one tristable phenotype configuration. We find that bistable transitions are fast but their states less robust. In contrast, phenotype transitions in the tristable situation have a comparatively long time duration, which reflects the robustness of the states. The results indicate parallels in the overall transition behavior of macrophage cells with other heterogeneous and plastic cell types, such as cancer cells. Our approach allows for a probabilistic interpretation of macrophage phenotype transitions and biological inference on phenotype robustness. In general, the methodology can easily be adapted to other systems where random state switches are known to occur.

Keywords: Cellular signaling; Markov state modeling; Transition path theory.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

LinkOut - more resources