Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 May;55(10):1487-1496.
doi: 10.1055/s-0042-1751420. Epub 2023 Feb 20.

Carbonyl Allylation and Crotylation: Historical Perspective, Relevance to Polyketide Synthesis, and Evolution of Enantioselective Ruthenium-Catalyzed Hydrogen Auto-Transfer Processes

Affiliations

Carbonyl Allylation and Crotylation: Historical Perspective, Relevance to Polyketide Synthesis, and Evolution of Enantioselective Ruthenium-Catalyzed Hydrogen Auto-Transfer Processes

Eliezer Ortiz et al. Synthesis (Stuttg). 2023 May.

Abstract

The evolution of methods for carbonyl allylation and crotylation of alcohol proelectrophiles culminating in the design of iodide-bound ruthenium-JOSIPHOS catalysts is prefaced by a brief historical perspective on asymmetric carbonyl allylation and its relevance to polyketide construction. Using gaseous allene or butadiene as precursors to allyl- or crotylruthenium nucleophiles, respectively, new capabilities for carbonyl allylation and crotylation have been unlocked, including stereo- and site-selective methods for the allylation and crotylation of 1,3-diols and related polyols.

Keywords: Allene; Allylation; Butadiene; Feedstock; Polyketide; Ruthenium.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest There are no conflicts to declare.

Figures

Figure 1
Figure 1
Selected milestones in carbonyl allylation from racemic reactions to catalytic enantioselective processes.
Figure 2
Figure 2
Selected FDA-approved polyketides medicines often comprise recurring acetate and propionate motifs.
Figure 3
Figure 3
“Borrowing H2” vs H2 auto-transfer.
Figure 4
Figure 4
Stereospecific carbonyl crotylation.
Figure 5
Figure 5
Iodide directs stereogenicity at ruthenium.
Figure 6
Figure 6
Enantioselective entry to polyketide motifs via ruthenium-catalyzed hydrogen auto-transfer.
Scheme 1
Scheme 1
Dienes as allylmetal pronucleophiles in ruthenium-catalyzed carbonyl addition via hydrogen auto-transfer.
Scheme 2
Scheme 2
syn-Diastereo- and enantioselective crotylation of primary alcohols mediated by a 2-silyl-substituted butadiene.
Scheme 3
Scheme 3
Chiral phosphate counterion-dependent inversion of diastereoselectivity in the enantioselective crotylation of primary alcohols mediated by butadiene.
Scheme 4
Scheme 4
Stereo- and site-selective ruthenium-JOSIPHOS catalyzed crotylation of primary alcohols mediated by butadiene.
Scheme 5
Scheme 5
Stereo- and site-selective ruthenium-JOSIPHOS catalyzed allylation of primary alcohols mediated by allene.

Similar articles

Cited by

References

    1. Saytzeff M; Saytzeff A; Sorokin B Chem. Ber 1876, 9, 33.
    2. Kanonnikoff J; Saytzeff A Ann. Chem. Pharm 1877, 185, 148.
    3. Saytzeff M; Saytzeff A Chem. Pharm 1877, 185, 151.
    4. Béhal A; Sommelet M Academie des Sciences 1904, 138, 92.
    5. Mikhailov BM; Bubnov YN Izv. Akad. Nauk SSSR, Ser. Khim 1964, 1874.
    6. König K; Neumann WP Tetrahedron Lett. 1967, 8, 493
    7. Hosomi A, Sakurai H, Tetrahedron Lett. 1976, 16, 1295.
    8. Okude Y; Hirano S; Hiyama T; Nozaki HJ Am. Chem. Soc 1977, 99, 3179.
    1. For selected examples of chiral reagents for asymmetric carbonyl allylmetalation, see:
    2. Herold T; Hoffmann RW Angew. Chem. Int. Ed 1978, 17, 768.
    3. Hoffmann RW; Herold T Chem. Ber 1981, 114, 375.
    4. Brown HC; Jadhav PK J. Am. Chem. Soc 1983, 105, 2092.
    5. Brown HC; Bhat KS J. Am. Chem. Soc 1986, 108, 293. - PubMed
    6. Brown HC; Bhat KS J. Am. Chem. Soc 1986, 108, 5919. - PubMed
    7. Roush WR; Walts AE; Hoong LK J. Am. Chem. Soc 1985, 107, 8186.
    8. Roush WR; Halterman RL J. Am. Chem. Soc 1986, 108, 294.
    9. Roush WR; Ando K; Powers DB; Palkowitz AD; Halterman RL J. Am. Chem. Soc 1990, 112, 6339.
    10. Seebach D; Beck AK; Imwinkelzied R; Roggo S; Wonnacott A Helv. Chim. Acta 1987, 70, 954.
    11. Riediker M; Duthaler RO Angew. Chem. Int. Ed 1989, 28, 494.
    12. Garcia J; Kim BM; Masamune SJ Org. Chem 1987, 52, 4831.
    13. Short RP; Masamune SJ Am. Chem. Soc 1989, 111, 1892.
    14. Reetz M Pure Appl. Chem 1988, 60, 1607.
    15. Corey EJ; Yu C-M; Kim SS J. Am. Chem. Soc 1989, 111, 5495.
    16. Kinnaird JWA; Ng PY; Kubota K; Wang X; Leighton JL J. Am. Chem. Soc 2002, 124, 7920. - PubMed
    17. Hackman BM; Lombardi PJ; Leighton JL Org. Lett 2004, 6, 4375. - PubMed
    1. Furuta K; Mouri M; Yamamoto H Synlett 1991, 561.
    2. Costa AL; Piazza MG; Tagliavini E; Trombini C; Umani-Ronchi AJ Am. Chem. Soc 1993, 115, 7001.
    3. Keck GE; Tarbet KH; Geraci LS J. Am. Chem. Soc 1993, 115, 8467.
    4. Denmark SE; Coe DM; Pratt NE; Griedel BD J. Org. Chem 1994, 59, 6161. - PubMed
    5. Denmark SE; Fu JJ Am. Chem. Soc 2001, 123, 9488. - PubMed
    6. Bandini M; Cozzi PG; Melchiorre P; Umani-Ronchi A Angew. Chem. Int. Ed 1999, 38, 3357. - PubMed
    7. Bandini M; Cozzi PG; Umani-Ronchi A Angew. Chem. Int. Ed 2000, 39, 2327. - PubMed
    8. Majdecki M; Niedbała P; Jurczak J ChemistrySelect 2020, 5, 6424.
    9. Majdecki M; Tyszka-Gumkowska A; Jurczak J Org. Lett 2020, 22, 8687. - PMC - PubMed
    10. Majdecki M; Grodek P; Jurczak JJ Org. Chem 2021, 86, 995. - PMC - PubMed
    1. For selected reviews on catalytic enantioselective carbonyl allylation and crotylation, see:
    2. Denmark SE; Fu J Chem. Rev 2003, 103, 2763. - PubMed
    3. Hall DG Synlett 2007, 1644.
    4. Hargaden GC; Guiry PJ Adv. Synth. Catal 2007, 349, 2407.
    5. Yus M; González-Gómez JC; Foubelo F Chem. Rev 2011, 111, 7774. - PubMed
    6. Huo H-X; Duvall JR; Huang M-Y; Hong R Org. Chem. Front 2014, 1, 303.
    7. Tian Q; Zhang G Synthesis 2016, 48, 4038.
    8. Spielmann K; Niel G; de Figueiredo RM; Campagne J-M Chem. Soc. Rev 2018, 47, 1159. - PubMed
    9. Rubtsov AE; Malkov Andrei V. Synlett 2021, 32, 1397.
    10. Neufeld J; Stünkel T; Mück-Lichtenfeld C; Daniliuc CG; Gilmour R Angew. Chem. Int. Ed 2021, in press; DOI: 10.1002/anie.202102222. - DOI - PMC - PubMed
    1. For selected reviews on polyketide total synthesis, see:
    2. Koskinen AMP; Karisalmi K Chem. Soc. Rev 2005, 34, 677. - PubMed
    3. Dechert-Schmitt A-MR; Schmitt DC; Gao X; Itoh T; Krische MJ Nat. Prod. Rep 2014, 31, 504. - PMC - PubMed
    4. Feng J; Kasun ZA; Krische MJ J. Am. Chem. Soc 2016, 138, 5467. - PMC - PubMed
    5. Liu H; Lin S; Jacobsen KM; Poulsen TB Angew. Chem. Int. Ed 2019, 58, 13630. - PubMed
    6. Doerksen RS; Meyer CC; Krische MJ Angew. Chem. Int. Ed 2019, 58, 14055. - PMC - PubMed
    7. Friedrich RM; Friestad GK Nat. Prod. Rep 2020, 37, 1229. - PubMed
    8. Sperandio C; Rodriguez J; Quintard A Org. Biomol. Chem 2020, 18, 1025. - PubMed
    9. He Y; Song H; Chen J; Zhu S Nat. Commun 2021, 12, 638; - PMC - PubMed
    10. Knochel P; Kremsmair A Synfacts 2021, 17, 0405.