[Digital rheumatology]
- PMID: 37843578
- DOI: 10.1007/s00108-023-01605-y
[Digital rheumatology]
Abstract
Chronic inflammatory rheumatic diseases mostly run an undulating course and with unspecific symptoms. The initial clarification and timely initiation of treatment are challenging, which is additionally exacerbated by the lack of specialized physicians. Digital approaches, including artificial intelligence (AI), should be of assistance and enable an improved, personalized and needs-based treatment; however, the evidence is currently still very limited. This article provides a compact overview of the current state of digital rheumatology.
Chronisch-entzündliche rheumatische Erkrankungen verlaufen meist undulierend und mit unspezifischer Symptomatik. Die Erstabklärung und rechtzeitige Einleitung einer Therapie sind eine Herausforderung, die durch den Facharztmangel zusätzlich erschwert wird. Digitale Ansätze inklusive künstlicher Intelligenz (KI) sollen hier Abhilfe schaffen und eine verbesserte, personalisierte und bedarfsgerechte Versorgung ermöglichen. Die Evidenz ist gegenwärtig jedoch noch sehr begrenzt. Der vorliegende Beitrag bietet einen kompakten Überblick über den aktuellen Stand der digitalen Rheumatologie.
Keywords: Artificial intelligence; Chronic inflammatory diseases; Personalized medicine; Symptom checkers; Telemedicine.
© 2023. The Author(s), under exclusive licence to Springer Medizin Verlag GmbH, ein Teil von Springer Nature.
References
Literatur
-
- Fedkov D, Berghofen A, Weiss C et al (2022) Efficacy and safety of a mobile app intervention in patients with inflammatory arthritis: a prospective pilot study. Rheumatol Int 42:2177–2190. https://doi.org/10.1007/s00296-022-05175-4 - DOI - PubMed - PMC
-
- Fuchs F, Morf H, Mohn J et al (2022) Diagnostic delay stages and pre-diagnostic treatment in patients with suspected rheumatic diseases before special care consultation: results of a multicenter-based study. Rheumatol Int. https://doi.org/10.1007/s00296-022-05223-z - DOI - PMC
-
- Gossec L, Guyard F, Leroy D et al (2019) Detection of flares by decrease in physical activity, collected using wearable activity trackers in rheumatoid arthritis or axial spondyloarthritis: an application of machine learning analyses in rheumatology. Arthritis Care Res 71:1336–1343. https://doi.org/10.1002/acr.23768 - DOI
-
- Gräf M, Knitza J, Leipe J et al (2022) Comparison of physician and artificial intelligence-based symptom checker diagnostic accuracy. Rheumatol Int. https://doi.org/10.1007/s00296-022-05202-4 - DOI - PubMed - PMC
-
- Hannah L, von Sophie R, Gabriella RM et al (2023) Stepwise asynchronous telehealth assessment of patients with suspected axial spondyloarthritis: results from a pilot study. Rheumatol Int. https://doi.org/10.1007/s00296-023-05360-z - DOI - PubMed