Multiplexing potential of NIR resonant and non-resonant Raman reporters for bio-imaging applications
- PMID: 37850265
- PMCID: PMC10947999
- DOI: 10.1039/d3an01298k
Multiplexing potential of NIR resonant and non-resonant Raman reporters for bio-imaging applications
Abstract
Multiplexed imaging, which allows for the interrogation of multiple molecular features simultaneously, is vital for addressing numerous challenges across biomedicine. Optically unique surface-enhanced Raman scattering (SERS) nanoparticles (NPs) have the potential to serve as a vehicle to achieve highly multiplexed imaging in a single acquisition, which is non-destructive, quantitative, and simple to execute. When using laser excitation at 785 nm, which allows for a lower background from biological tissues, near infrared (NIR) dyes can be used as Raman reporters to provide high Raman signal intensity due to the resonance effect. This class of imaging agents are known as surface-enhanced resonance Raman scattering (SERRS) NPs. Investigators have predominantly utilized two classes of Raman reporters in their nanoparticle constructs for use in biomedical applications: NIR-resonant and non-resonant Raman reporters. Herein, we investigate the multiplexing potential of five non-resonant SERS: BPE, 44DP, PTT, PODT, and BMMBP, and five NIR resonant SERRS NP flavors with heptamethine cyanine dyes: DTTC, IR-770, IR-780, IR-792, and IR-797, which have been extensively used for biomedical imaging applications. Although SERRS NPs display high Raman intensities, due to their resonance properties, we observed that non-resonant SERS NP concentrations can be quantitated by the intensity of their unique emissions with higher accuracy. Spectral unmixing of five-plex mixtures revealed that the studied non-resonant SERS NPs maintain their detection limits more robustly as compared to the NIR resonant SERRS NP flavors when introducing more components into a mixture.
Conflict of interest statement
Conflicts of interest
There are no conflicts to declare.
Figures





Similar articles
-
Noninvasive and Highly Multiplexed Five-Color Tumor Imaging of Multicore Near-Infrared Resonant Surface-Enhanced Raman Nanoparticles In Vivo.ACS Nano. 2021 Dec 28;15(12):19956-19969. doi: 10.1021/acsnano.1c07470. Epub 2021 Nov 19. ACS Nano. 2021. PMID: 34797988 Free PMC article.
-
Selecting Surface-Enhanced Raman Spectroscopy Flavors for Multiplexed Imaging Applications: Beyond the Experiment.J Phys Chem Lett. 2021 Jun 17;12(23):5564-5570. doi: 10.1021/acs.jpclett.1c01504. Epub 2021 Jun 9. J Phys Chem Lett. 2021. PMID: 34105967
-
Silica-Coated, Waxberry-like Surface-Enhanced Raman Resonant Scattering Tag-Pair with Near-Infrared Raman Dye Encoding: Toward In Vivo Duplexing Detection.Anal Chem. 2020 Nov 3;92(21):14814-14821. doi: 10.1021/acs.analchem.0c03674. Epub 2020 Oct 12. Anal Chem. 2020. PMID: 33045167
-
Single cell analysis using surface enhanced Raman scattering (SERS) tags.Methods. 2012 Jul;57(3):272-9. doi: 10.1016/j.ymeth.2012.03.024. Epub 2012 Apr 4. Methods. 2012. PMID: 22498143 Free PMC article. Review.
-
NIR-II Surface-Enhanced Raman Scattering Nanoprobes in Biomedicine: Current Impact and Future Directions.Small. 2024 Oct;20(40):e2402235. doi: 10.1002/smll.202402235. Epub 2024 Jun 7. Small. 2024. PMID: 38845530 Review.
Cited by
-
Gold Nanoraspberries for Surface-Enhanced Raman Scattering: Synthesis, Optimization, and Characterization.ACS Omega. 2025 Jan 28;10(5):4588-4598. doi: 10.1021/acsomega.4c08791. eCollection 2025 Feb 11. ACS Omega. 2025. PMID: 39959079 Free PMC article.
-
The evolution of immune profiling: will there be a role for nanoparticles?Nanoscale Horiz. 2024 Oct 21;9(11):1896-1924. doi: 10.1039/d4nh00279b. Nanoscale Horiz. 2024. PMID: 39254004 Free PMC article. Review.
-
A Permeabilization Workflow To Enable Specific Multiplexed Profiling Using SERS Nanoparticles.ACS Appl Mater Interfaces. 2025 Jul 2;17(26):37747-37762. doi: 10.1021/acsami.5c08079. Epub 2025 Jun 17. ACS Appl Mater Interfaces. 2025. PMID: 40525305 Free PMC article.
References
-
- Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, García de Abajo FJ, Goodacre R, Graham D, Haes AJ, Haynes CL, Huck C, Itoh T, Käll M, Kneipp J, Kotov NA, Kuang H, Le Ru EC, Lee HK, Li J-F, Ling XY, Maier SA, Mayerhöfer T, Moskovits M, Murakoshi K, Nam J-M, Nie S, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz GC, Shegai T, Schlücker S, Tay L-L, Thomas KG, Tian ZQ, Van Duyne RP, Vo-Dinh T, Wang Y, Willets KA, Xu C, Xu H, Xu Y, Yamamoto YS, Zhao B and Liz-Marzán LM, ACS Nano, 2020, 14, 28–117. - PMC - PubMed
-
- Eremina OE, Semenova AA, Sergeeva EA, Brazhe NA, Maksimov GV, Shekhovtsova TN, Goodilin EA and Veselova IA, Russ. Chem. Rev, 2018, 87, 741–770.
-
- Zavaleta CL, Kircher MF and Gambhir SS, J. Nucl. Med, 2011, 52, 1839–1844. - PubMed
-
- Zong C, Xu M, Xu L-J, Wei T, Ma X, Zheng X-S, Hu R and Ren B, Chem. Rev, 2018, 118, 4946–4980. - PubMed
-
- Mulvaney SP, Musick MD, Keating CD and Natan MJ, Langmuir, 2003, 19, 4784–4790.
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous