Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Nov 3;35(3).
doi: 10.1088/1361-6528/ad0480.

Hyperthermic triggers for drug delivery platforms

Affiliations

Hyperthermic triggers for drug delivery platforms

Lilian C Alarcón-Segovia et al. Nanotechnology. .

Abstract

Electromagnetic fields can penetrate aqueous media in a homogeneous and instantaneous way, without physical contact, independently of its temperature, pressure, agitation degree and without modifying their chemical compositions nor heat and mass transfer conditions. In addition, superparamagnetic biomaterials can interact with electromagnetic fields by absorbing electromagnetic energy and transforming it in localized heat with further diffusion to surrounding media. This paper is devoted to the exploration of the potential use of hyperthermic effects resulting from the interaction between externally applied electromagnetic fields and superparamagnetic nanoparticles as a trigger for controlled drug release in soft tissue simulating materials. Gelatin based soft tissue simulating materials were prepared and doped with superparamagnetic nanoparticles. The materials were irradiated with externally applied electromagnetic fields. The effects on temperature and diffusion of a drug model in water and phosphate buffer were investigated. Significant hyperthermic effects were observed. The temperature of the soft tissue simulating material resulted increased from 35 °C to 45 °C at 2.5 °C min-1. Moreover, the release of an entrapped model drug reached 89%. The intensity of the hyperthermic effects was found to have a strong dependency on the concentration of superparamagnetic nanoparticles and the power and the pulse frequency of the electromagnetic field.

Keywords: biomaterials; magnetic field; microwaves.

PubMed Disclaimer

LinkOut - more resources