CST3 alleviates bilirubin-induced neurocytes' damage by promoting autophagy
- PMID: 37854583
- PMCID: PMC10579785
- DOI: 10.1515/tnsci-2022-0314
CST3 alleviates bilirubin-induced neurocytes' damage by promoting autophagy
Abstract
High concentrations of unconjugated bilirubin (UCB) have toxic effects. The aim of our study was to find a way to elevate UCB tolerance or inhibit its toxicity in neurocytes. It has been reported that cystatin C (CST3) concentrations have a significant positive correlation with total bilirubin (TB) levels and a negative correlation with albumin levels. In addition, CST3 can directly bind UCB, decrease human umbilical vein endothelial cells' permeability, improve blood-brain barrier integrity after ischemic brain injury in mice, and induce autophagy. We hypothesized that CST3 could increase the solubility of UCB, decrease permeability of neurocytes, induce autophagy of neurocytes, and alleviate bilirubin-induced damage. To verify our hypothesis, we measured TB and conjugated bilirubin levels, and the permeability and autophagy of neurocytes treated with UCB and CST3. Our findings suggest that CST3 can protect against UCB-induced damage in neurocytes and that autophagy played an important role in this process.
Keywords: autophagy; cystatin C; hyperbilirubinemia; unconjugated bilirubin.
© 2023 the author(s), published by De Gruyter.
Conflict of interest statement
Conflict of interest: Authors state no conflict of interest
Figures
References
-
- Sullivan JI, Rockey DC. Diagnosis and evaluation of hyperbilirubinemia. Curr Opin Gastroenterol. 2017;33(3):164–70. - PubMed
-
- França de Souza D, Alonso MA, Brito MM, Meirelles MG, Francischini MCP, Nichi M, et al. Oxidative state in equine neonates: anti- and pro-oxidants. Equine Vet J. 2021;53(2):379–84. - PubMed
-
- Hansen TWR, Wong RJ, Stevenson DK. Molecular physiology and pathophysiology of bilirubin handling by the blood, liver, intestine, and brain in the newborn. Physiol Rev. 2020;100(3):1291–1346. - PubMed
-
- Li S, Huang H, Zhang Y, Li L, Hua Z. Bilirubin induces A1-like reactivity of astrocyte. Neurochem Res. 2023;48(3):804–15. - PubMed
LinkOut - more resources
Full Text Sources
Miscellaneous