Noninvasive theta-burst stimulation of the human striatum enhances striatal activity and motor skill learning
- PMID: 37857774
- PMCID: PMC10620076
- DOI: 10.1038/s41593-023-01457-7
Noninvasive theta-burst stimulation of the human striatum enhances striatal activity and motor skill learning
Abstract
The stimulation of deep brain structures has thus far only been possible with invasive methods. Transcranial electrical temporal interference stimulation (tTIS) is a novel, noninvasive technology that might overcome this limitation. The initial proof-of-concept was obtained through modeling, physics experiments and rodent models. Here we show successful noninvasive neuromodulation of the striatum via tTIS in humans using computational modeling, functional magnetic resonance imaging studies and behavioral evaluations. Theta-burst patterned striatal tTIS increased activity in the striatum and associated motor network. Furthermore, striatal tTIS enhanced motor performance, especially in healthy older participants as they have lower natural learning skills than younger subjects. These findings place tTIS as an exciting new method to target deep brain structures in humans noninvasively, thus enhancing our understanding of their functional role. Moreover, our results lay the groundwork for innovative, noninvasive treatment strategies for brain disorders in which deep striatal structures play key pathophysiological roles.
© 2023. The Author(s).
Conflict of interest statement
N.G. is an inventor of a patent on the technology, assigned to MIT. N.G. and E.N. are co-founders of TI Solutions AG, a company committed to producing hardware and software solutions to support TI research. The remaining authors declare no competing interests.
Figures





References
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources