Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Oct 31;39(43):15249-15259.
doi: 10.1021/acs.langmuir.3c01936. Epub 2023 Oct 20.

Hierarchical Surface Instability in Polymer Films

Affiliations

Hierarchical Surface Instability in Polymer Films

Belda Amelia Junisu et al. Langmuir. .

Abstract

This study demonstrates hierarchical instabilities in thin films. The hierarchical instabilities display three morphological characteristics: (1) windmill-like patterns at the macroscale, (2) Bénard cells and striations at the microscale, and (3) holes at the mesoscale. Such hierarchical instabilities occurred when spin coating was performed on high-volatile solutions under a high relative humidity (RH) but were suppressed when spin coating was performed on low-volatile solutions regardless of the RH. The high-volatile solutions comprise poly(4-vinylpyridine) (P4VP) in methanol or ethanol. The low-volatility solutions comprise P4VP in propanol or butanol. P4VP molecular weights, P4VP concentrations, spin rates, and film thicknesses are not vital factors in forming hierarchical instability in spin-coated P4VP films. Instead, the formation of hierarchical instabilities depends on the RH and solvent types. Namely, the hierarchical instabilities are driven by Bénard-Marangoni convection, water vapor condensation, and disturbance of spin-up and spin-off stages during spin coating of highly volatile solutions under high RH. Mechanisms of hierarchical instabilities are interpreted in detail.

PubMed Disclaimer

LinkOut - more resources