Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Feb 1;268(Pt 1):125313.
doi: 10.1016/j.talanta.2023.125313. Epub 2023 Oct 14.

Development of an electrochemical sensor using carbon nanotubes and hydrophobic natural deep eutectic solvents for the detection of α-glucosidase activity in extracts of autochthonous medicinal plants

Affiliations

Development of an electrochemical sensor using carbon nanotubes and hydrophobic natural deep eutectic solvents for the detection of α-glucosidase activity in extracts of autochthonous medicinal plants

Nicolás A Aschemacher et al. Talanta. .

Abstract

The present work describes for the first time the use of a hydrophobic natural deep eutectic solvent (H-NADES) as a dispersant for carboxylated nanotubes for the design and construction of an electrochemical sensor for the assay of α-glucosidase and its inhibitors. In this work, we used as the electrochemical probe the product of the enzymatic reaction, which consists of two redox groups and generates the analytical signal. The combination of de carboxylic multi-walled carbon nanotubes (MWCNTc) and the H-NADES of thymol and lactic acid (TLa) increases the electroactive surface area and promotes electron transfer of the electrode modified with carbon nanotubes. The electrochemical sensor enabled the detection of α-glucosidase in a range of 0.004-0.1 U mL-1 with a detection limit of 0.0013 U mL-1, which is lower than most existing methods. In addition, two α-glucosidase inhibitors, acarbose and quercetin, and two plant extracts, Schinus molle and Eugenia uniflora, were evaluated to assess the feasibility of screening potential antidiabetic drugs, and the IC50 values were 5.37 μg mL-1 and 5.28 μg mL-1. Thus, this sensing strategy represents the beginning of the incorporation of NADES in the development and design of novel sensors and their application in electrochemistry and medical analysis.

Keywords: Carbon nanotubes; Electrochemical sensors; H-NADES; Medicinal plants; Response surface methodology; α-glucosidase.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources