Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Dec:182:114102.
doi: 10.1016/j.fct.2023.114102. Epub 2023 Oct 20.

Ginger exosome-like nanoparticles (GELNs) induced apoptosis, cell cycle arrest, and anti-metastatic effects in triple-negative breast cancer MDA-MB-231 cells

Affiliations

Ginger exosome-like nanoparticles (GELNs) induced apoptosis, cell cycle arrest, and anti-metastatic effects in triple-negative breast cancer MDA-MB-231 cells

R Anusha et al. Food Chem Toxicol. 2023 Dec.

Abstract

Ginger exosome-like nanoparticles (GELNs) have been extensively implicated in alleviating inflammation, maintaining intestinal microbiome and are considered competent drug delivery vehicles. Despite this, the current knowledge of the GELN interaction with cancer cells is limited. Triple-negative breast cancer (TNBC), an aggressive variant lacking efficient therapeutics, necessitates novel natural counterparts with minimal side effects. This study investigates the action of GELNs isolated from ginger rhizomes against TNBC cells. GELNs were isolated by ultracentrifugation and characterized physicochemically. The interaction of GELNs with TNBC cells (MDA-MB-231) was studied in detail. The GELNs induced a concentration-dependent decrease in cell viability in MDA-MB-231 cells without affecting the normal cell lines tested. GELNs induced apoptosis as indicated by morphological changes, nuclear fragmentation, membrane damage, phosphatidyl serine translocation, ROS generation, drop in mitochondrial membrane potential, expression of apoptotic specific proteins, and increased caspase activity. GELNs also instigated cell cycle arrest, retarded cell migration and colony formation in TNBC cells. These findings report a novel action of GELNs against TNBC cells and a closer look at the underlying molecular mechanism of this interspecies communication. This opens newer prospects for using dietary ELNs to target therapeutically challenging cancers.

Keywords: Apoptosis; Breast cancer; Cell communication; Ginger ELNs; ROS.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest Authors declare that there is no conflicts of interest.

LinkOut - more resources