Flagellar polymorphism-dependent bacterial swimming motility in a structured environment
- PMID: 37867560
- PMCID: PMC10587448
- DOI: 10.2142/biophysico.bppb-v20.0024
Flagellar polymorphism-dependent bacterial swimming motility in a structured environment
Abstract
Most motile bacteria use supramolecular motility machinery called bacterial flagellum, which converts the chemical energy gained from ion flux into mechanical rotation. Bacterial cells sense their external environment through a two-component regulatory system consisting of a histidine kinase and response regulator. Combining these systems allows the cells to move toward favorable environments and away from their repellents. A representative example of flagellar motility is run-and-tumble swimming in Escherichia coli, where the counter-clockwise (CCW) rotation of a flagellar bundle propels the cell forward, and the clockwise (CW) rotation undergoes cell re-orientation (tumbling) upon switching the direction of flagellar motor rotation from CCW to CW. In this mini review, we focus on several types of chemotactic behaviors that respond to changes in flagellar shape and direction of rotation. Moreover, our single-cell analysis demonstrated back-and-forth swimming motility of an original E. coli strain. We propose that polymorphic flagellar changes are required to enhance bacterial movement in a structured environment as a colony spread on an agar plate.
Keywords: TIRFM; bacterial flagellum; chemotaxis; colony spreading; flagellar polymorphism.
2023 THE BIOPHYSICAL SOCIETY OF JAPAN.
Conflict of interest statement
The authors declare there are no competing financial interests.
Figures




Similar articles
-
Differential Bending Stiffness of the Bacterial Flagellar Hook under Counterclockwise and Clockwise Rotations.Phys Rev Lett. 2023 Mar 31;130(13):138401. doi: 10.1103/PhysRevLett.130.138401. Phys Rev Lett. 2023. PMID: 37067319
-
Directional Switching Mechanism of the Bacterial Flagellar Motor.Comput Struct Biotechnol J. 2019 Jul 31;17:1075-1081. doi: 10.1016/j.csbj.2019.07.020. eCollection 2019. Comput Struct Biotechnol J. 2019. PMID: 31452860 Free PMC article. Review.
-
Distinct chemotactic behavior in the original Escherichia coli K-12 depending on forward-and-backward swimming, not on run-tumble movements.Sci Rep. 2020 Sep 28;10(1):15887. doi: 10.1038/s41598-020-72429-1. Sci Rep. 2020. PMID: 32985511 Free PMC article.
-
Bacterial cell-body rotation driven by a single flagellar motor and by a bundle.Biophys J. 2021 Jun 15;120(12):2454-2460. doi: 10.1016/j.bpj.2021.04.019. Epub 2021 Apr 29. Biophys J. 2021. PMID: 33932433 Free PMC article.
-
Coordinated regulation of multiple flagellar motors by the Escherichia coli chemotaxis system.Biophysics (Nagoya-shi). 2012 Mar 3;8:59-66. doi: 10.2142/biophysics.8.59. eCollection 2012. Biophysics (Nagoya-shi). 2012. PMID: 27857608 Free PMC article. Review.
References
-
- Miyata, M., Robinson, R. C., Uyeda, T. Q. P., Fukumori, Y., Fukushima, S. I., Haruta, S., et al. . Tree of motility—A proposed history of motility systems in the tree of life. Genes Cells 25, 6–21 (2020). https://doi.org/10.1111/gtc.12737 - PMC - PubMed
-
- Jarrell, K. F., McBride, M. J.. The surprisingly diverse ways that prokaryotes move. Nat. Rev. Microbiol. 6, 466–476 (2008). https://doi.org/10.1038/nrmicro1900 - PubMed
-
- Morimoto, Y. V., Minamino, T.. Architecture and assembly of the bacterial flagellar motor complex. Subcell. Biochem. 96, 297–321 (2021). https://doi.org/10.1007/978-3-030-58971-4_8 - PubMed
-
- Rieu, M., Krutyholowa, R., Taylor, N. M. I., Berry, R. M.. A new class of biological ion-driven rotary molecular motors with 5:2 symmetry. Front. Microbiol. 13, 948383 (2022). https://doi.org/10.3389/fmicb.2022.948383 - PMC - PubMed
-
- Sowa, Y., Berry, R. M.. Bacterial flagellar motor. Q. Rev. Biophys. 41, 103–132 (2008). https://doi.org/10.1017/s0033583508004691 - PubMed