Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Oct 27;84(12):ajvr.23.08.0186.
doi: 10.2460/ajvr.23.08.0186. Print 2023 Dec 1.

Untargeted metabolomic profiles reveal widespread metabolic perturbations and identify candidate biomarkers in aminoaciduric canine hypoaminoacidemic hepatopathy syndrome

Affiliations
Free article

Untargeted metabolomic profiles reveal widespread metabolic perturbations and identify candidate biomarkers in aminoaciduric canine hypoaminoacidemic hepatopathy syndrome

John P Loftus et al. Am J Vet Res. .
Free article

Abstract

Objective: To identify metabolites and metabolic pathways affected in dogs with aminoaciduric canine hypoaminoacidemic hepatopathy syndrome (ACHES) compared to healthy control (CON) dogs of similar ages and breeds. To improve our understanding of ACHES pathophysiology and identify novel candidate biomarkers associated with ACHES.

Animals: A prospective case-control study. Privately owned dogs with ACHES (n = 19) and healthy (CON) dogs (n = 9) were recruited between February 18, 2015, and April 18, 2018.

Methods: A prospective case-control study. Plasma and urine were collected from ACHES and CON dogs. The Cornell University Proteomics and Metabolomics Core Facility conducted an untargeted metabolomic analysis.

Results: After controlling for age, sex, and weight, 111 plasma and 207 urine metabolites significantly differed between ACHES and CON dogs. Data reduction and cluster analysis revealed robust segregation between ACHES and CON dogs. Enrichment analysis of significant compounds in plasma or urine identified altered metabolic pathways, including those related to AA metabolism, cellular energetics, and lipid metabolism. Biomarker analysis identified metabolites that best-distinguished ACHES from CON dogs, including pyruvic acid isomer and glycerol-3-phosphate in the plasma and an alanine isomer and choline in the urine.

Clinical relevance: Our findings provide an in-depth analysis of metabolic perturbations associated with ACHES. Several affected metabolic pathways (eg, lipid metabolism) offer a new understanding of ACHES pathophysiology. Novel candidate biomarkers warrant further evaluation to determine their potential to aid in ACHES diagnosis, prognosis, and treatment monitoring.

Keywords: amino acids; canine (dog); hepatocutaneous syndrome; liver; metabolomics.

PubMed Disclaimer

LinkOut - more resources