Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Nov;9(11):1795-1809.
doi: 10.1038/s41477-023-01543-5. Epub 2023 Oct 23.

The global biogeography of tree leaf form and habit

Haozhi Ma  1 Thomas W Crowther  2 Lidong Mo  2 Daniel S Maynard  2   3 Susanne S Renner  4 Johan van den Hoogen  2 Yibiao Zou  2 Jingjing Liang  5 Sergio de-Miguel  6   7 Gert-Jan Nabuurs  8 Peter B Reich  9   10   11 Ülo Niinemets  12 Meinrad Abegg  13 Yves C Adou Yao  14 Giorgio Alberti  15   16 Angelica M Almeyda Zambrano  17 Braulio Vilchez Alvarado  18 Esteban Alvarez-Dávila  19 Patricia Alvarez-Loayza  20 Luciana F Alves  21 Christian Ammer  22 Clara Antón-Fernández  23 Alejandro Araujo-Murakami  24 Luzmila Arroyo  24 Valerio Avitabile  25 Gerardo A Aymard  26   27 Timothy R Baker  28 Radomir Bałazy  29 Olaf Banki  30 Jorcely G Barroso  31 Meredith L Bastian  32   33 Jean-Francois Bastin  34 Luca Birigazzi  35 Philippe Birnbaum  36   37   38 Robert Bitariho  39 Pascal Boeckx  40 Frans Bongers  8 Olivier Bouriaud  41 Pedro H S Brancalion  42 Susanne Brandl  43 Francis Q Brearley  44 Roel Brienen  28 Eben N Broadbent  17 Helge Bruelheide  45   46 Filippo Bussotti  47 Roberto Cazzolla Gatti  48 Ricardo G César  42 Goran Cesljar  49 Robin Chazdon  50   51 Han Y H Chen  52 Chelsea Chisholm  2 Hyunkook Cho  53 Emil Cienciala  54   55 Connie Clark  56 David Clark  57 Gabriel D Colletta  58 David A Coomes  59 Fernando Cornejo Valverde  60 José J Corral-Rivas  61 Philip M Crim  62   63 Jonathan R Cumming  62 Selvadurai Dayanandan  64 André L de Gasper  65 Mathieu Decuyper  8 Géraldine Derroire  66 Ben DeVries  67 Ilija Djordjevic  68 Jiri Dolezal  69   70 Aurélie Dourdain  66 Nestor Laurier Engone Obiang  71 Brian J Enquist  72   73 Teresa J Eyre  74 Adandé Belarmain Fandohan  75 Tom M Fayle  76   77 Ted R Feldpausch  78 Leandro V Ferreira  79 Leena Finér  80 Markus Fischer  81 Christine Fletcher  82 Jonas Fridman  83 Lorenzo Frizzera  84 Javier G P Gamarra  85 Damiano Gianelle  84 Henry B Glick  86 David J Harris  87 Andrew Hector  88 Andreas Hemp  89 Geerten Hengeveld  8 Bruno Hérault  90   91 John L Herbohn  92 Martin Herold  93 Annika Hillers  94   95 Eurídice N Honorio Coronado  96 Cang Hui  97   98 Thomas T Ibanez  99 Iêda Amaral  100 Nobuo Imai  101 Andrzej M Jagodziński  102   103 Bogdan Jaroszewicz  104 Vivian Kvist Johannsen  105 Carlos A Joly  106 Tommaso Jucker  107 Ilbin Jung  53 Viktor Karminov  108 Kuswata Kartawinata  20 Elizabeth Kearsley  109 David Kenfack  110 Deborah K Kennard  111 Sebastian Kepfer-Rojas  105 Gunnar Keppel  112 Mohammed Latif Khan  113 Timothy J Killeen  24 Hyun Seok Kim  114   115   116   117 Kanehiro Kitayama  118 Michael Köhl  119 Henn Korjus  120 Florian Kraxner  121 Dmitry Kucher  122 Diana Laarmann  120 Mait Lang  120 Simon L Lewis  28   123 Huicui Lu  124 Natalia V Lukina  125 Brian S Maitner  72 Yadvinder Malhi  126 Eric Marcon  127 Beatriz Schwantes Marimon  128 Ben Hur Marimon-Junior  128 Andrew R Marshall  92   129   130 Emanuel H Martin  131 Jorge A Meave  132 Omar Melo-Cruz  133 Casimiro Mendoza  134 Cory Merow  50 Abel Monteagudo Mendoza  135   136 Vanessa S Moreno  42 Sharif A Mukul  92   137 Philip Mundhenk  119 María Guadalupe Nava-Miranda  138   139 David Neill  140 Victor J Neldner  74 Radovan V Nevenic  68 Michael R Ngugi  74 Pascal A Niklaus  141 Jacek Oleksyn  102 Petr Ontikov  108 Edgar Ortiz-Malavasi  18 Yude Pan  142 Alain Paquette  143 Alexander Parada-Gutierrez  24 Elena I Parfenova  144 Minjee Park  5   114 Marc Parren  145 Narayanaswamy Parthasarathy  146 Pablo L Peri  147 Sebastian Pfautsch  148 Oliver L Phillips  28 Nicolas Picard  149 Maria Teresa F Piedade  150 Daniel Piotto  151 Nigel C A Pitman  152 Irina Mendoza-Polo  153 Axel D Poulsen  87 John R Poulsen  56   154 Hans Pretzsch  155   156 Freddy Ramirez Arevalo  157 Zorayda Restrepo-Correa  158 Mirco Rodeghiero  84   159 Samir G Rolim  151 Anand Roopsind  160 Francesco Rovero  161   162 Ervan Rutishauser  163 Purabi Saikia  164 Christian Salas-Eljatib  165   166   167 Philippe Saner  168 Peter Schall  22 Mart-Jan Schelhaas  8 Dmitry Schepaschenko  121   169 Michael Scherer-Lorenzen  170 Bernhard Schmid  171 Jochen Schöngart  150 Eric B Searle  143 Vladimír Seben  172 Josep M Serra-Diaz  173   174 Douglas Sheil  145   175 Anatoly Z Shvidenko  121 Javier E Silva-Espejo  176 Marcos Silveira  177 James Singh  178 Plinio Sist  90 Ferry Slik  179 Bonaventure Sonké  180 Alexandre F Souza  181 Stanislaw Miścicki  182 Krzysztof J Stereńczak  29 Jens-Christian Svenning  183   184 Miroslav Svoboda  185 Ben Swanepoel  186 Natalia Targhetta  150 Nadja Tchebakova  144 Hans Ter Steege  30   187 Raquel Thomas  188 Elena Tikhonova  125 Peter M Umunay  189 Vladimir A Usoltsev  190 Renato Valencia  191 Fernando Valladares  192 Fons van der Plas  193 Tran Van Do  194 Michael E van Nuland  195 Rodolfo M Vasquez  135 Hans Verbeeck  109 Helder Viana  196   197 Alexander C Vibrans  65   198 Simone Vieira  199 Klaus von Gadow  200 Hua-Feng Wang  201 James V Watson  202 Gijsbert D A Werner  203 Bertil Westerlund  83 Susan K Wiser  204 Florian Wittmann  205 Hannsjoerg Woell  206 Verginia Wortel  207 Roderick Zagt  208 Tomasz Zawiła-Niedźwiecki  209 Chunyu Zhang  210 Xiuhai Zhao  210 Mo Zhou  5 Zhi-Xin Zhu  201 Irie C Zo-Bi  91 Constantin M Zohner  2
Affiliations

The global biogeography of tree leaf form and habit

Haozhi Ma et al. Nat Plants. 2023 Nov.

Abstract

Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1. Global coverage of forest inventory locations (GFBi data) and plot-level leaf-type proportions.
a, A total of 9,781 forest inventory plots (green points) were used for geospatial modelling of forest leaf types. b, Number of plots in relation to their proportion of evergreen vs deciduous and broadleaved vs needle-leaved individuals.
Fig. 2
Fig. 2. The global distribution of forest leaf types.
a, The global distribution of tree leaf type as predicted by a random forest model built from area-based leaf-type data (see Methods). Pixels are coloured in the red, green and blue spectrum according to the percentage of total tree basal area occupied by broadleaved evergreen, broadleaved deciduous and needle-leaved tree types, as indicated by the ternary plot. Needle-leaved evergreen and needle-leaved deciduous forests were combined due to the low global coverage of needle-leaved deciduous trees. be, Predicted relative coverage of each leaf type from random forest models. Ref. was used to mask non-forest areas. b, Broadleaved evergreen coverage. c, Broadleaved deciduous coverage. d, Needle-leaved evergreen coverage. e, Needle-leaved deciduous coverage.
Fig. 3
Fig. 3. Variable importance of environmental covariates on forest leaf-type variation.
a,b, Cumulative importance of the first six principal components of climate, soil, topographic and vegetation covariates in the variation of leaf habit (a) and leaf form (b). c,d, Variable importance of selected environmental features on variation in leaf habit (c) and leaf form (d). Bars in c and d represent the mean ± 95% CI; relative importance based on the 10 best random forest models (n = 10; see Methods). Area-based leaf-type proportions were used to represent forest (plot-level) leaf-type variation.
Fig. 4
Fig. 4. The global proportion of evergreen broadleaved, deciduous broadleaved, needle-leaved evergreen and needle-leaved deciduous trees.
The relative proportions of trees that occur within tropical, temperate, boreal and arid regions are shown as separate pie charts for each leaf type.
Fig. 5
Fig. 5. Forested areas where future climates may no longer support prevailing leaf types.
If a pixel’s forest area was predominantly (>60%) covered by one leaf type, it was classified as that specific leaf type. Pixels where no leaf type exceeded 60% coverage were classified as mixed forest. To determine the relative proportion of each leaf type per plot, we considered the basal area of individual trees (area-based leaf type). Coloured pixels on the map indicate areas that, by the end of the century (2071–2100), will face climate conditions that currently support a different forest type. The future climate conditions were represented using three climate change scenarios: low-emission (SSP1–RCP2.6; a,b), business-as-usual (SSP3–RCP7; c,d) and high-emission (SSP5–RCP8.5; e,f) for the period 2071–2100. Panels a, c and e show the present forest types. In contrast, panels b, d and f show the type of forest expected under the projected future climate of each respective pixel.

References

    1. Pan Y, Birdsey RA, Phillips OL, Jackson RB. The structure, distribution, and biomass of the world’s forests. Annu. Rev. Ecol. Evol. Syst. 2013;44:593–622.
    1. Pan Y, et al. A large and persistent carbon sink in the world’s forests. Science. 2011;333:988–993. - PubMed
    1. The State of the World’s Forests 2020. Forests, Biodiversity and People (FAO and UNEP, 2020).
    1. Bonan GB. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science. 2008;320:1444–1449. - PubMed
    1. Wright IJ, et al. The worldwide leaf economics spectrum. Nature. 2004;428:821–827. - PubMed

Publication types