Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Nov 15;35(5).
doi: 10.1088/1361-6528/ad06d4.

Eco-friendly alkali lignin-assisted water-based graphene oxide ink and its application as a resistive temperature sensor

Affiliations

Eco-friendly alkali lignin-assisted water-based graphene oxide ink and its application as a resistive temperature sensor

Junaid Khan et al. Nanotechnology. .

Abstract

Inkjet-printable ink formulated with graphene oxide (GO) offers several advantages, including aqueous dispersion, low cost, and environmentally friendly production. However, water-based GO ink encounters challenges such as high surface tension, low wetting properties, and reduced ink stability over prolonged storage time. Alkali lignin, a natural surfactant, is promising in improving GO ink's stability, wettability, and printing characteristics. The concentration of surfactant additives is a key factor in fine-tuning GO ink's stability and printing properties. The current study aims to explore the detailed effects of alkali lignin concentration and optimize the overall properties of graphene oxide (GO) ink for drop-on-demand thermal inkjet printing. A meander-shaped temperature sensor electrode was printed using the optimized GO ink to demonstrate its practical applicability for commercial purposes. The sensing properties are evaluated using a simple experimental setup across a range of temperatures. The findings demonstrate a significant increase in zeta potential by 25% and maximum absorption by 84.3%, indicating enhanced stability during prolonged storage with an optimized alkali lignin concentration compared to the pure GO dispersions. The temperature sensor exhibits a remarkable thermal coefficient of resistance of 1.21 within the temperature range of 25 °C-52 °C, indicative of excellent sensitivity, response, and recovery time. These results highlight the potential of alkali lignin as a natural surfactant for improving the performance and applicability of inkjet-printable GO inks in various technological applications.

Keywords: advanced materials; inkjet printer; nanomaterials; reduced graphene oxide; temperature sensor.

PubMed Disclaimer

LinkOut - more resources