Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024;31(26):4058-4078.
doi: 10.2174/0109298673263447230920151524.

Current Computational Methods for Protein-peptide Complex Structure Prediction

Affiliations
Review

Current Computational Methods for Protein-peptide Complex Structure Prediction

Chao Yang et al. Curr Med Chem. 2024.

Abstract

Peptide-mediated protein-protein interactions (PPIs) play an important role in various biological processes. The development of peptide-based drugs to modulate PPIs has attracted increasing attention due to the advantages of high specificity and low toxicity. In the development of peptide-based drugs, one of the most important steps is to determine the interaction details between the peptide and the target protein. In addition to experimental methods, recently developed computational methods provide a cost-effective way for studying protein-peptide interactions. In this article, we carefully reviewed recently developed protein-peptide docking methods, which were classified into three groups: template-based docking, template-free docking, and hybrid method. Then, we presented available benchmarking sets and evaluation metrics for assessing protein-peptide docking performance. Furthermore, we discussed the use of molecular dynamics simulations, as well as deep learning approaches in protein-peptide complex prediction.

Keywords: Protein-peptide docking; benchmarking sets; deep learning; docking performance.; evaluation metrics; molecular dynamics simulations.

PubMed Disclaimer

References

    1. Wells J.A.; McClendon C.L.; Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature 2007,450(7172),1001-1009 - DOI - PubMed
    1. Stelzl U.; Worm U.; Lalowski M.; Haenig C.; Brembeck F.H.; Goehler H.; Stroedicke M.; Zenkner M.; Schoenherr A.; Koeppen S.; Timm J.; Mintzlaff S.; Abraham C.; Bock N.; Kietzmann S.; Goedde A.; Toksöz E.; Droege A.; Krobitsch S.; Korn B.; Birchmeier W.; Lehrach H.; Wanker E.E.; A human protein-protein interaction network: A resource for annotating the proteome. Cell 2005,122(6),957-968 - DOI - PubMed
    1. Rual J.F.; Venkatesan K.; Hao T.; Hirozane-Kishikawa T.; Dricot A.; Li N.; Berriz G.F.; Gibbons F.D.; Dreze M.; Ayivi-Guedehoussou N.; Klitgord N.; Simon C.; Boxem M.; Milstein S.; Rosenberg J.; Goldberg D.S.; Zhang L.V.; Wong S.L.; Franklin G.; Li S.; Albala J.S.; Lim J.; Fraughton C.; Llamosas E.; Cevik S.; Bex C.; Lamesch P.; Sikorski R.S.; Vandenhaute J.; Zoghbi H.Y.; Smolyar A.; Bosak S.; Sequerra R.; Doucette-Stamm L.; Cusick M.E.; Hill D.E.; Roth F.P.; Vidal M.; Towards a proteome-scale map of the human protein–protein interaction network. Nature 2005,437(7062),1173-1178 - DOI - PubMed
    1. Arkin M.R.; Whitty A.; The road less traveled: Modulating signal transduction enzymes by inhibiting their protein–protein interactions. Curr Opin Chem Biol 2009,13(3),284-290 - DOI - PubMed
    1. Nero T.L.; Morton C.J.; Holien J.K.; Wielens J.; Parker M.W.; Oncogenic protein interfaces: Small molecules, big challenges. Nat Rev Cancer 2014,14(4),248-262 - DOI - PubMed

LinkOut - more resources