Assessment of ChatGPT in the Prehospital Management of Ophthalmological Emergencies - An Analysis of 10 Fictional Case Vignettes
- PMID: 37890504
- DOI: 10.1055/a-2149-0447
Assessment of ChatGPT in the Prehospital Management of Ophthalmological Emergencies - An Analysis of 10 Fictional Case Vignettes
Abstract
Background: The artificial intelligence (AI)-based platform ChatGPT (Chat Generative Pre-Trained Transformer, OpenAI LP, San Francisco, CA, USA) has gained impressive popularity in recent months. Its performance on case vignettes of general medical (non-ophthalmological) emergencies has been assessed - with very encouraging results. The purpose of this study was to assess the performance of ChatGPT on ophthalmological emergency case vignettes in terms of the main outcome measures triage accuracy, appropriateness of recommended prehospital measures, and overall potential to inflict harm to the user/patient.
Methods: We wrote ten short, fictional case vignettes describing different acute ophthalmological symptoms. Each vignette was entered into ChatGPT five times with the same wording and following a standardized interaction pathway. The answers were analyzed following a systematic approach.
Results: We observed a triage accuracy of 93.6%. Most answers contained only appropriate recommendations for prehospital measures. However, an overall potential to inflict harm to users/patients was present in 32% of answers.
Conclusion: ChatGPT should presently not be used as a stand-alone primary source of information about acute ophthalmological symptoms. As AI continues to evolve, its safety and efficacy in the prehospital management of ophthalmological emergencies has to be reassessed regularly.
Hintergrund: Die auf künstlicher Intelligenz (KI) basierende Plattform ChatGPT (Chat Generative Pre-Trained Transformer, OpenAI LP, San Francisco, CA, USA) hat in den vergangenen Monaten rasant an Popularität gewonnen. Vorangegange Studien zeigen ein vielversprechendes Abschneiden von ChatGPT in der Beantwortung allgemeinmedizinischer Notfallvignetten. Ziel dieser Studie war es, die Antworten von ChatGPT auf ophthalmologische Fallvignetten hinsichtlich Triagegenauigkeit, Angemessenheit empfohlener präklinischer Maßnahmen sowie Schadenspotenzial zu beurteilen.
Methoden: Wir erstellten 10 kurze, fiktive Fallvignetten aus dem Bereich augenheilkundlicher Akutsymptomatik. Jede Vignette wurde entsprechend einem standardisierten Interaktionspfad 5-mal in ChatGPT eingegeben. Die Antworten wurden anhand eines strukturierten Evaluationsmanuals ausgewertet.
Ergebnisse: Wir beobachteten eine Triagegenauigkeit von 93,6%. Die meisten Antworten enthielten nur angemessene Empfehlungen bezüglich präklinischer Maßnahmen. Insgesamt zeigte sich jedoch in 32% der Antworten ein Schadenspotenzial für den Nutzer/Patienten.
Schlussfolgerung: ChatGPT sollte derzeit nicht als einzige Informationsquelle zur Beurteilung akuter ophthalmologischer Symptome herangezogen werden. Neuentwicklungen auf dem Bereich der KI sollten regelmäßig im Hinblick auf Chancen und Risiken im Bereich der augenärztlichen Notfallversorgung evaluiert werden.
Thieme. All rights reserved.
Conflict of interest statement
The authors declare that they have no conflict of interest.
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
Research Materials