Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Oct 21;15(20):4466.
doi: 10.3390/nu15204466.

Roles of Short-Chain Fatty Acids in Inflammatory Bowel Disease

Affiliations
Review

Roles of Short-Chain Fatty Acids in Inflammatory Bowel Disease

Yoonhwa Shin et al. Nutrients. .

Abstract

The gut microbiome is a diverse bacterial community in the human gastrointestinal tract that plays important roles in a variety of biological processes. Short-chain fatty acids (SCFA) are produced through fermentation of dietary fiber. Certain microbes in the gut are responsible for producing SCFAs such as acetate, propionate and butyrate. An imbalance in gut microbiome diversity can lead to metabolic disorders and inflammation-related diseases. Changes in SCFA levels and associated microbiota were observed in IBD, suggesting an association between SCFAs and disease. The gut microbiota and SCFAs affect reactive oxygen species (ROS) associated with IBD. Gut microbes and SCFAs are closely related to IBD, and it is important to study them further.

Keywords: gut; inflammatory bowel disease; microbiome; short-chain fatty acid.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
SCFA and overall flow on gut immunity.
Figure 2
Figure 2
SCFAs are important tissue-specific energy and signaling molecules.

References

    1. Lynch S.V., Pedersen O. The Human Intestinal Microbiome in Health and Disease. N. Engl. J. Med. 2016;375:2369–2379. doi: 10.1056/NEJMra1600266. - DOI - PubMed
    1. Hooper L.V., Littman D.R., Macpherson A.J. Interactions between the microbiota and the immune system. Science. 2012;336:1268–1273. doi: 10.1126/science.1223490. - DOI - PMC - PubMed
    1. Kim M.S., Kim Y., Choi H., Kim W., Park S., Lee D., Kim D.K., Kim H.J., Choi H., Hyun D.W., et al. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model. Gut. 2020;69:283–294. doi: 10.1136/gutjnl-2018-317431. - DOI - PubMed
    1. Palm N.W., de Zoete M.R., Flavell R.A. Immune-microbiota interactions in health and disease. Clin. Immunol. 2015;159:122–127. doi: 10.1016/j.clim.2015.05.014. - DOI - PMC - PubMed
    1. Cho I., Blaser M.J. The human microbiome: At the interface of health and disease. Nat. Rev. Genet. 2012;13:260–270. doi: 10.1038/nrg3182. - DOI - PMC - PubMed

LinkOut - more resources