Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 Jul;139(1):1-7.
doi: 10.1128/jb.139.1.1-7.1979.

Role of exonucleases V and VIII in adenosine 5'-triphosphate- and deoxynucleotide triphosphate-dependent strand break repair in toluenized Escherichia coli cells treated with X-rays

Role of exonucleases V and VIII in adenosine 5'-triphosphate- and deoxynucleotide triphosphate-dependent strand break repair in toluenized Escherichia coli cells treated with X-rays

E A Waldstein. J Bacteriol. 1979 Jul.

Abstract

The repair of X-ray-induced strand breaks was studied in permeabilized Escherichia coli recBC cells deficient for the adenosine 5'-triphosphate (ATP)-dependent exonuclease V and in recBC sbcA cells that possess the ATP-independent exonuclease VIII. It is shown that repair induced by additon of ATP does not take place in recBC and recBC sbcB cells and is limited in recBC sbcA cells. ATP-dependent repair is nevertheless observable if together with ATP a mixture of deoxynucleotide monophosphates is supplied to the cells. These data fit with the assumption that in wild-type cells ATP-dependent repair involves exonuclease V-induced deoxyribonucleic acid degradation and rephosphorylation of the degradation products which are reused for deoxyribonucleic acid polymerase I-dependent break closure. Repair in the presence of deoxynucleotide triphosphates rejoins a similar fraction of breaks in all strains tested irrespective of the amount of postirradiation degradation resulting from exonuclease V and exonuclease VIII activities. Thus, exonuclease V is dispensable for deoxynucleotide triphosphate-dependent repair, i.e., does not "clean" the ends of breaks produced by X-irradiation. ATP- and deoxynucleotide triphosphate-dependent repair are not additive and seem to repair the same population of deoxyribonucleic acid molecules damaged by X-irradiation.

PubMed Disclaimer

Similar articles

References

    1. Biochem Biophys Res Commun. 1965 Jan 4;18:24-9 - PubMed
    1. J Mol Biol. 1964 Aug;9:288-307 - PubMed
    1. J Mol Biol. 1977 Jun 15;113(1):27-41 - PubMed
    1. Genetics. 1968 Sep;60(1):19-30 - PubMed
    1. J Mol Biol. 1971 Jun 28;58(3):739-53 - PubMed

MeSH terms

LinkOut - more resources