An approach for collaborative development of a federated biomedical knowledge graph-based question-answering system: Question-of-the-Month challenges
- PMID: 37900350
- PMCID: PMC10603356
- DOI: 10.1017/cts.2023.619
An approach for collaborative development of a federated biomedical knowledge graph-based question-answering system: Question-of-the-Month challenges
Abstract
Knowledge graphs have become a common approach for knowledge representation. Yet, the application of graph methodology is elusive due to the sheer number and complexity of knowledge sources. In addition, semantic incompatibilities hinder efforts to harmonize and integrate across these diverse sources. As part of The Biomedical Translator Consortium, we have developed a knowledge graph-based question-answering system designed to augment human reasoning and accelerate translational scientific discovery: the Translator system. We have applied the Translator system to answer biomedical questions in the context of a broad array of diseases and syndromes, including Fanconi anemia, primary ciliary dyskinesia, multiple sclerosis, and others. A variety of collaborative approaches have been used to research and develop the Translator system. One recent approach involved the establishment of a monthly "Question-of-the-Month (QotM) Challenge" series. Herein, we describe the structure of the QotM Challenge; the six challenges that have been conducted to date on drug-induced liver injury, cannabidiol toxicity, coronavirus infection, diabetes, psoriatic arthritis, and ATP1A3-related phenotypes; the scientific insights that have been gleaned during the challenges; and the technical issues that were identified over the course of the challenges and that can now be addressed to foster further development of the prototype Translator system. We close with a discussion on Large Language Models such as ChatGPT and highlight differences between those models and the Translator system.
Keywords: Translational research; bioinformatics; knowledge graphs; semantic technology; team science.
© The Author(s) 2023.
Conflict of interest statement
JF receives additional funding from the Rady Children’s Institute for Genomic Medicine, and her spouse is Founder and Principal of Friedman Bioventure. JH receives grant/contract support (paid to institution) from: Pfizer; Novartis; Janssen; BMS; and Gilead. PJM receives grant/research support from: AbbVie; Amgen; Bristol Myers Squibb; Eli Lilly; Galapagos; Gilead; Janssen; Novartis; Pfizer; Sun Pharma; and UCB. PJM also serves as a consultant at: AbbVie; Acelyrin; Aclaris; Amgen; Boehringer Ingelheim; Bristol Myers Squibb; Eli Lilly; Galapagos; Gilead; GlaxoSmithKline; Inmagene; Janssen; Pfizer; Moonlake Pharma; Novartis; Sun Pharma; and UCB. In addition, PJM receives speakers’ bureau fees from: AbbVie; Amgen; Eli Lilly; Janssen; Novartis; Pfizer; and Union Chimique Belge. SHS is supported by the National Institute on Aging, Intramural Research Program. All other primary authors have no conflicts of interest to declare.
Figures


References
-
- The Alan Turing Institute, Interest Group. Knowledge graphs. How do we encode knowledge to use at scale in open, evolving, decentralized systems? 2023. https://www.turing.ac.uk/research/interest-groups/knowledge-graphs. Accessed July 10, 2023.
-
- Fecho K, Thessen AE, Baranzini SE, The Biomedical Data Translator Consortium, et al. Sex, obesity, diabetes, and exposure to particulate matter: scientific insights revealed by analysis of open clinical data sources during a five day hackathon. J Biomed Inform. 2019;100:103325. doi: 10.1016/j.jbi.2019.103325. - DOI - PMC - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources