Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2024 Feb 13:2023.10.16.558465.
doi: 10.1101/2023.10.16.558465.

Gastrulation-stage gene expression in Nipbl +/- mouse embryos foreshadows the development of syndromic birth defects

Gastrulation-stage gene expression in Nipbl +/- mouse embryos foreshadows the development of syndromic birth defects

Stephenson Chea et al. bioRxiv. .

Update in

Abstract

In animal models, Nipbl-deficiency phenocopies gene expression changes and birth defects seen in Cornelia de Lange Syndrome (CdLS), the most common cause of which is Nipbl-haploinsufficiency. Previous studies in Nipbl+/- mice suggested that heart development is abnormal as soon as cardiogenic tissue is formed. To investigate this, we performed single-cell RNA-sequencing on wildtype (WT) and Nipbl+/- mouse embryos at gastrulation and early cardiac crescent stages. Nipbl+/- embryos had fewer mesoderm cells than WT and altered proportions of mesodermal cell subpopulations. These findings were associated with underexpression of genes implicated in driving specific mesodermal lineages. In addition, Nanog was found to be overexpressed in all germ layers, and many gene expression changes observed in Nipbl+/- embryos could be attributed to Nanog overexpression. These findings establish a link between Nipbl-deficiency, Nanog overexpression, and gene expression dysregulation/lineage misallocation, which ultimately manifest as birth defects in Nipbl+/- animals and CdLS.

Teaser: Gene expression changes during gastrulation of Nipbl-deficient mice shed light on early origins of structural birth defects.

PubMed Disclaimer

Publication types

LinkOut - more resources