Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Sep 25;13(15):5183-5206.
doi: 10.7150/thno.85419. eCollection 2023.

Aptamer-engineered (nano)materials for theranostic applications

Affiliations
Review

Aptamer-engineered (nano)materials for theranostic applications

Navid Rabiee et al. Theranostics. .

Abstract

A diverse array of organic and inorganic materials, including nanomaterials, has been extensively employed in multifunctional biomedical applications. These applications encompass drug/gene delivery, tissue engineering, biosensors, photodynamic and photothermal therapy, and combinatorial sciences. Surface and bulk engineering of these materials, by incorporating biomolecules and aptamers, offers several advantages such as decreased cytotoxicity, improved stability, enhanced selectivity/sensitivity toward specific targets, and expanded multifunctional capabilities. In this comprehensive review, we specifically focus on aptamer-modified engineered materials for diverse biomedical applications. We delve into their mechanisms, advantages, and challenges, and provide an in-depth analysis of relevant literature references. This critical evaluation aims to enhance the scientific community's understanding of this field and inspire new ideas for future research endeavors.

Keywords: aptamer; aptamer modified materials; biomedical engineering; biosensors; nanomaterials.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interest exists.

Figures

Scheme 1
Scheme 1
Schematic illustration of the general process of Systematic Evolution of Ligands by EXponential enrichment (SELEX).
Figure 1
Figure 1
Working principles of engineered DNA nanomachine. (A) Schematic illustration of the working mechanism of DNA-based nanomachine. Structure of DNA-based nanomachine, and the aptamer DNA nanomachine for cell surface computing: the binding of two aptamers to their biomarkers and releasing cS and cF from recognition toes. (B) PAGE results established the assembly of the DNA-logic gate TP. Lane 1: DNA TP scaffold. Lane 2: F/S/R-TP. Lane 3: sgc8c/cS-TP. Lane 4: sgc4f/cF-TP. Lane 5: sgc8c/cS-sgc4f/cF-TP. Lane 6: F/S/R-sgc8c/ cS-sgc4f/cF-TP. (C) Dynamic light scattering (DLS) results for determination of the size of 500 nM TP scaffold (red) and DNA-logic gate TP (blue). Reprinted (adapted) with permission from . Copyright 2018 American Chemical Society. (D) The design of Apt-DOA with 12 MUC1 aptamers, Bcl2, and 28 P-gp ASOs, targeted co-delivery of ASO and DOX to improve therapy in drug-resistant cancer cells. (E) Schematic illustration of the synthesized Apt-origami-ASO dispersed in PBS buffer. (F) Dox-release profile of Apt-DOA in PBS buffer. Reprinted (adapted) with permission from . Copyright 2020 American Chemical Society.
Figure 2
Figure 2
Synthesis and properties of Ca-AS1411/Ce6/hemin@pHis-PEG Nanocomplexes (CACH-PEG). (a) Illustration depicting the preparation of CACH-PEG. (b, c) Transmission Electron Microscopy (TEM) image (b) and Scanning Transmission Electron Microscopy (STEM) mapping (c) of CACH-PEG Nanocomplexes. (d) Hydrodynamic sizes measured by Dynamic Light Scattering (DLS) and a photograph (inset) of CACH-PEG dispersed in water, PBS, buffer, and DMEM cell-culture medium. (e) UV-visible-near-infrared (UV-vis-NIR) spectra of Ce6, hemin, and CACH-PEG. (f) Generation of oxygen in 2 mM H2O2 solutions after adding AS1411/hemin (AH) complex or CACH-PEG Nanocomplexes at room temperature. (g) Light-triggered generation of singlet oxygen measured by increased SOSG fluorescence for free Ce6 CDCH-PEG or CACH-PEG under 660 nm light irradiation in the absence or presence of H2O2. (h, i) TEM images of CACH-PEG after overnight incubation in PBS at (h) pH 7.4 or (i) pH 5.5. (j) Hydrodynamic sizes of CACH-PEG after incubation in PBS at pH 7.4, 6.5, or 5.5 for 1 hour. Reprinted (adapted) with permission from . Copyright 2018 American Chemical Society.
Figure 3
Figure 3
(A) DNA gelation-based cloaking and decloaking of CTCs. (a) The aptamer-initiator blocks were capable of binding to the EpCAM. (b) Confocal images of aptamer-initiator blocks (red) colocalized with DiO-stained lipid (green). (c) The 3D structure of MCF-7 cells is shrouded in DNA hydrogel, which displays multilayered cells in the hydrogel. (d and e) When ATP was added, the MCF-7 cells were released. Reprinted (adapted) with permission from . Copyright 2017 American Chemical Society. (B) (a) Design of a DNA network for stem cell fishing. (b) Formation procedure of DNA chains by RCA to attain a 3D network. (b) Combination of DNA chains to envision molecular diffusion throughout the fabrication of the DNA network. (c) The mechanism of capture includes capture, envelop and release. Reprinted (adapted) with permission from . Copyright 2020 American Chemical Society.
Figure 4
Figure 4
Schematic of the fabrication of NPs and ANPs. (A) Mechanism to form NPs and ANPs. (B) TEM image of MANPs and MNPs. The results showed the round-shaped morphology of liposomes. In vivo biodistribution of ANPs. (C) In vivo distribution of ANPs after intravenous injection for 1-48 h. (D) Fluorescence images of HCT116 cells, SGC7901 cells, and HeLa cells incubated with MANPs for 6 h. The scale bar is 200 μm. Reprinted (adapted) with permission from . Copyright 2019 American Chemical Society.
Figure 5
Figure 5
Design of DNA Aptamer- Magnetic Nanofibers for Effective Capture of CTC. (A) schematic shows the surface modification of MSNFs for the capture of cancer cell. Reprinted (adapted) with permission from . Copyright 2019 American Chemical Society. Sensitized magneto-chemo theranostics and NIR/MR dual-modality imaging. (B). Accumulation of the ZIPP with AS1411 in the tumor after 8 h. (C) The MRI signal ratio of tumor to the muscle is reliable with the accumulation rate detected from NIR imaging that ZIPP-Apt was efficiently reserved in the tumor area and triggered a signal decrease at 24 and 48 h after injection. Reprinted (adapted) with permission from . Copyright 2021 American Chemical Society.

References

    1. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem. 2019;12:908–31.
    1. Ahmadi S, Rabiee N, Bagherzadeh M, Elmi F, Fatahi Y, Farjadian F. et al. Stimulus-Responsive Sequential Release Systems for Drug and Gene Delivery. Nano today. 2020;34:100914. - PMC - PubMed
    1. Baig N, Kammakakam I, Falath WS. Nanomaterials: A review of synthesis, properties, recent progress, and challenges. Mater Adv. 2021;2:1821.
    1. Kang D, Jeon E, Kim S, Lee J. Lanthanide-Doped Upconversion Nanomaterials: Recent Advances and Applications. Biochip J. 2020;14:124–35.
    1. Ma Y, Song M, Li L, Lao X, Wong MC, Hao J. Advances in upconversion luminescence nanomaterial-based biosensor for virus diagnosis. Exploration. 2022;2:20210216. - PMC - PubMed

Substances