Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Nov 24;86(11):2457-2467.
doi: 10.1021/acs.jnatprod.3c00525. Epub 2023 Nov 1.

Neurite Outgrowth-Inducing Drimane-Type Sesquiterpenoids Isolated from Cultures of the Polypore Abundisporus violaceus MUCL 56355

Affiliations

Neurite Outgrowth-Inducing Drimane-Type Sesquiterpenoids Isolated from Cultures of the Polypore Abundisporus violaceus MUCL 56355

Winnie Chemutai Sum et al. J Nat Prod. .

Abstract

Abundisporin A (1), together with seven previously undescribed drimane sesquiterpenes named abundisporins B-H (2-8), were isolated from a polypore, Abundisporus violaceus MUCL 56355 (Polyporaceae), collected in Kenya. Chemical structures of the isolated compounds were elucidated based on exhaustive 1D and 2D NMR spectroscopic measurements and supported by HRESIMS data. The absolute configurations of the isolated compounds were determined by using Mosher's method for 1-4 and TDDFT-ECD calculations for 4 and 5-8. None of the isolated compounds exhibited significant activities in either antimicrobial or cytotoxicity assays. Notably, all of the tested compounds demonstrated neurotrophic effects, with 1 and 6 significantly increasing outgrowth of neurites when treated with 5 ng/mL NGF.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Chart 1
Chart 1
Figure 1
Figure 1
Key 1H–1H COSY, HMBC, and ROESY correlations of 14.
Figure 2
Figure 2
ΔδSR values of (S)/(R)-MTPA esters obtained from abundisporin A (1) diagnostic for (11R), abundisporins B (2) and C (3) diagnostic for (7S), and abundisporin D (4) diagnostic for (1S).
Figure 3
Figure 3
Experimental ECD spectrum of 4 (black) compared with the CAM-B3LYP/TZVP PCM/MeOH ECD spectrum of (1S,4R,5R,10R)-4 (dark yellow). Level of DFT optimization: ωB97X/TZVP PCM/MeOH.
Figure 4
Figure 4
Key 1H–1H COSY, HMBC, and ROESY correlations of 58.
Figure 5
Figure 5
Experimental ECD spectrum of 5 (black) compared with the B3LYP/TZVP PCM/MeOH ECD spectrum of (4R,5R,10S)-5 (red). Level of DFT optimization: ωB97X/TZVP PCM/MeOH.
Figure 6
Figure 6
Experimental ECD spectrum of 6 (black) compared with the CAM-B3LYP/TZVP PCM/MeOH ECD spectrum of (4R,5R,9S,10S)-6 (dark yellow). Level of DFT optimization: ωB97X/TZVP PCM/MeOH.
Figure 7
Figure 7
Experimental ECD spectrum of 7 (black) compared with the PBE0/TZVP PCM/MeOH ECD spectrum of (4R,5R,9R,10S)-7 (purple). Level of DFT optimization: ωB97X/TZVP PCM/MeOH.
Figure 8
Figure 8
Experimental ECD spectrum of 8 (black) compared with the PBE0/TZVP PCM/MeOH ECD spectrum of (4R,5R,10S)-8 (purple). Level of DFT optimization: ωB97X/TZVP PCM/MeOH.
Figure 9
Figure 9
Neurite outgrowth activity of drimane-type sesquiterpenoid compounds at 5 μg/mL. PC-12 cells were treated with 5 ng/mL of NGF and (A) DMSO and (B–G) drimane-type sesquiterpenoid compounds 16. Phase contrast images show the neurite outgrowth after 48 h in PC-12 cells. (H) Data shown in bar graph originate from five independent experiments ± s.e.m. *p < 0.1, one-tailed t-test.

References

    1. Hyde K. D.; Xu J.; Rapior S.; Jeewon R.; Lumyong S.; Niego A. G. T.; Abeywickrama P. D.; Aluthmuhandiram J. V. S.; Brahamanage R. S.; Brooks S.; Chaiyasen A.; Chethana K. W. T.; Chomnunti P.; Chepkirui C.; Chuankid B.; de Silva N. I.; Doilom M.; Faulds C.; Gentekaki E.; Gopalan V.; Kakumyan P.; Harishchandra D.; Hemachandran H.; Hongsanan S.; Karunarathna A.; Karunarathna S. C.; Khan S.; Kumla J.; Jayawardena R. S.; Liu J. K.; Liu N.; Luangharn T.; Macabeo A. P. G.; Marasinghe D. S.; Meeks D.; Mortimer P. E.; Mueller P.; Nadir S.; Nataraja K. N.; Nontachaiyapoom S.; O’Brien M.; Penkhrue W.; Phukhamsakda C.; Ramanan U. S.; Rathnayaka A. R.; Sadaba R. B.; Sandargo B.; Samarakoon B. C.; Tennakoon D. S.; Siva R.; Sriprom W.; Suryanarayanan T. S.; Sujarit K.; Suwannarach N.; Suwunwong T.; Thongbai B.; Thongklang N.; Wei D.; Wijesinghe S. N.; Winiski J.; Yan J.; Yasanthika E.; Stadler M. Fungal Divers. 2019, 97, 1–136. 10.1007/s13225-019-00430-9. - DOI
    1. Bills G. F.; Gloer J. B. Microbiol. Spectrum 2016, 4, 1087–1119. 10.1128/microbiolspec.FUNK-0009-2016. - DOI - PubMed
    1. Sandargo B.; Chepkirui C.; Cheng T.; Chaverra-Muñoz L.; Thongbai B.; Stadler M.; Hüttel S. Biotechnol. Adv. 2019, 37, 107344.10.1016/j.biotechadv.2019.01.011. - DOI - PubMed
    1. Gressler M.; Löhr N. A.; Schäfer T.; Lawrinowitz S.; Seibold P. S.; Hoffmeister D. 2021. Nat. Prod. Rep. 2021, 38, 702–722. 10.1039/D0NP00077A. - DOI - PubMed
    1. Zhanel G.G.; Zelenitsky S.; Lawrence C. K.; Adam H. J.; Golden A.; Berry L.; et al. Drugs 2021, 81, 233–256. 10.1007/s40265-020-01443-4. - DOI - PubMed

Publication types

Supplementary concepts

LinkOut - more resources