Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Nov 1.
doi: 10.1021/jacs.3c03899. Online ahead of print.

Covalent LYTAC Enabled by DNA Aptamers for Immune Checkpoint Degradation Therapy

Affiliations

Covalent LYTAC Enabled by DNA Aptamers for Immune Checkpoint Degradation Therapy

Yuqing Li et al. J Am Chem Soc. .

Abstract

Immune checkpoint blockade (ICB) therapy, while achieving tremendous clinical successes, still suffers from a low objective response rate in clinical cancer treatment. As a proof-of-concept study, we propose a new immune checkpoint degradation (ICD) therapy relying on lysosome-targeting chimera (LYTAC) to deplete immune checkpoint programmed death ligand-1 (PD-L1) on the tumor cell surface. Our designed chimeric aptamer on one side targets lysosome-trafficking receptor, and on the other side allows biorthogonal covalent-conjugation-reinforced specific binding of PD-L1. This covalent LYTAC is able to hijack PD-L1 for lysosomal degradation with greatly improved efficiency over its noncovalent counterpart in complex in vivo environment. Beyond abolishing the PD-1/PD-L1 axis associated immune resistance, we demonstrate for the first time that LYTAC-triggered PD-L1 degradation could directly cause immunogenic apoptosis of tumor cells to elicit tumor-specific immune responses, offering unparalleled advantages over ICB antibody therapy. Remarkably, ICD therapy with covalent LYTAC achieves comparable or higher antitumor efficacy while causing significantly less inflammatory injury compared to antibody-based ICB therapy. Moreover, covalent LYTAC can serve as a general platform for specifically degrading other membrane-associated proteins, making it a promising tool for future applications. Our work presents a novel molecular tool for effective LYTAC in complex environments, offering valuable insights in pushing DNA-based LYTAC drugs toward in vivo and clinical applications.

PubMed Disclaimer

LinkOut - more resources