Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jan 1;146(1):014502.
doi: 10.1115/1.4063951.

Characterizing the Suture Pullout Force for Human Small Bowel

Affiliations

Characterizing the Suture Pullout Force for Human Small Bowel

Alex T Gong et al. J Biomech Eng. .

Abstract

Performing a small bowel anastomosis, or reconnecting small bowel segments, remains a core competency and critical step for the successful surgical management of numerous bowel and urinary conditions. As surgical education and technology moves toward improving patient outcomes through automation and increasing training opportunities, a detailed characterization of the interventional biomechanical properties of the human bowel is important. This is especially true due to the prevalence of anastomotic leakage as a frequent (3.02%) postoperative complication of small bowel anastomoses. This study aims to characterize the forces required for a suture to tear through human small bowel (suture pullout force, SPOF), while analyzing how these forces are affected by tissue orientation, suture material, suture size, and donor demographics. 803 tests were performed on 35 human small bowel specimens. A uni-axial test frame was used to tension sutures looped through 10 × 20 mm rectangular bowel samples to tissue failure. The mean SPOF of the small bowel was 4.62±1.40 N. We found no significant effect of tissue orientation (p = 0.083), suture material (p = 0.681), suture size (p = 0.131), age (p = 0.158), sex (p = .083), or body mass index (BMI) (p = 0.100) on SPOF. To our knowledge, this is the first study reporting human small bowel SPOF. Little research has been published about procedure-specific data on human small bowel. Filling this gap in research will inform the design of more accurate human bowel synthetic models and provide an accurate baseline for training and clinical applications.

Keywords: mechanical properties of small intestine; small bowel anastomosis; small intestine; suture pullout force.

PubMed Disclaimer

Publication types

LinkOut - more resources