Modelling Takenouchi-Kosaki syndrome using disease-specific iPSCs
- PMID: 37918315
- DOI: 10.1016/j.scr.2023.103221
Modelling Takenouchi-Kosaki syndrome using disease-specific iPSCs
Abstract
Takenouchi-Kosaki Syndrome (TKS) is a congenital multi-organ disorder caused by the de novo missense mutation c.191A > G p. Tyr64Cys (Y64C) in the CDC42 gene. We previously elucidated the functional abnormalities and thrombopoietic effects of Y64C using HEK293 and MEG01 cells. In the present study, we used iPSCs derived from TKS patients to model the disease and successfully recapitulated macrothrombocytopenia, a prominent TKS phenotype. The megakaryopoietic differentiation potential of TKS-iPSCs and platelet production capacity were examined using an efficient platelet production method redesigned from existing protocols. The results obtained showed that TKS-iPSCs produced fewer hematopoietic progenitor cells, exhibited defective megakaryopoiesis, and released platelets with an abnormally low count and giant morphology. We herein report the first analysis of TKS-iPSC-derived megakaryocytes and platelets, and currently utilize this model to perform drug evaluations for TKS. Therefore, our simple yet effective differentiation method, which mimics the disease in a dish, is a feasible strategy for studying hematopoiesis and related diseases.
Keywords: Disease model; Megakaryopoiesis; Platelet disorder; Stem cell differentiation; TKS; iPSC.
Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.