MicroRNA-155, a double-blade sword regulator of innate tuberculosis immunity
- PMID: 37925110
- DOI: 10.1016/j.micpath.2023.106438
MicroRNA-155, a double-blade sword regulator of innate tuberculosis immunity
Abstract
Tuberculosis (TB) is a chronic, life-threatening disease caused by unusual facultative intracellular bacteria, Mycobacterium tuberculosis. This bacterium has unique resistance to many antimicrobial agents and has become a major global health concern due to emerging multidrug-resistant strains. Additionally, it has developed multiple schemes to exploit host immune signaling and establish long-term survival within host tissues. Thus, understanding the pathways that govern the crosstalk between the bacterium and the immune system could provide a new avenue for therapeutic interventions. MicroRNAs (miRs) are short, noncoding, and regulator RNA molecules that control the expression of cellular genes by targeting their mRNAs post-transcriptionally. MiR-155 is one of the most crucial miR in shaping the host immune defenses against M. tuberculosis. MiR-155 is remarkably downregulated in patients with clear clinical TB symptoms in comparison with latently infected patients and/or healthy individuals, thereby implicating its role in controlling M. tuberculosis infection. However, functional probing of miR-155 suggests dual effects in regulating the host's innate defenses in response to mycobacterial infection. This review provides comprehensive knowledge and future perspectives regarding complex signaling pathways that mediated miR-155 expression during M. tuberculosis infections. Moreover, miR-155-targeting signaling orchestrates inflammatory mediators' production, apoptosis, and autophagy.
Keywords: Apoptosis; Autophagy; Inflammatory; Mycobacterium tuberculosis; miR-155.
Copyright © 2023 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Medical