Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Feb;259(Pt 1):127873.
doi: 10.1016/j.ijbiomac.2023.127873. Epub 2023 Nov 4.

Bacterial cellulose based TiO2-CdS nanocomposite gel with enhanced photocatalytic activity for adsorptive degradation of cationic dye

Affiliations

Bacterial cellulose based TiO2-CdS nanocomposite gel with enhanced photocatalytic activity for adsorptive degradation of cationic dye

Xin Qian et al. Int J Biol Macromol. 2024 Feb.

Abstract

Dye released by industrial is one of the main known pollutants in wastewater, which is harmfully affected to the human health. Adsorptive method by absorbents and photocatalytic degradation technique are advanced technologies to remove dyes from wastewater. However, the single technique mentioned above has imperfections limiting its application. Herein, in order to integrate the two techniques and take both advantages, bacterial cellulose (BC) based titanium dioxide (TiO2)‑cadmium sulfide (CdS) nanocomposite gel was prepared by microwave-assisted solvothermal synthesis. The BC@TiO2-CdS nanocomposite gel was characterized by SEM, EDS, XRD, XPS, Raman spectral and TG, its photocatalytic mechanism was proved by PL. The results showed the TiO2-CdS nanophotocatalyst exhibited binary hierarchical structure and followed the Z-scheme type photocatalytic system. The Z-scheme heterojunction is advantageous for photo-generated charge separation and migration. The photocatalytic performance of BC@TiO2-CdS nanocomposite gel was evaluated by MB degradation under visible light irradiation. Due to synergistic effect of BC matrix and TiO2-CdS, the as-prepared BC@TiO2-CdS nanocomposite gel possesses enhanced photocatalytic activity with 94.47 % removal of methylene blue (MB) after 180 min visible light irradiation. Therefore, this work provides a facile route to fabricate bio-mass based efficient nanophotocatalytic material for pretreating the water pollution.

Keywords: Bacterial cellulose; Nanocomposite; Photocatalyst.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources