Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Nov 28;17(22):22499-22507.
doi: 10.1021/acsnano.3c06011. Epub 2023 Nov 5.

Precision Synthesis of Bimetallic Nanoparticles via Nanofluidics in Nanopipets

Affiliations

Precision Synthesis of Bimetallic Nanoparticles via Nanofluidics in Nanopipets

Heekwon Lee et al. ACS Nano. .

Abstract

Bimetallic nanoparticles often show properties superior to their single-component counterparts. However, the large parameter space, including size, structure, composition, and spatial arrangement, impedes the discovery of the best nanoparticles for a given application. High-throughput methods that can control the composition and spatial arrangement of the nanoparticles are desirable for accelerated materials discovery. Herein, we report a methodology for synthesizing bimetallic alloy nanoparticle arrays with precise control over their composition and spatial arrangement. A dual-channel nanopipet is used, and nanofluidic control in the nanopipet further enables precise tuning of the electrodeposition rate of each element, which determines the final composition of the nanoparticle. The composition control is validated by finite element simulation as well as electrochemical and elemental analyses. The scope of the particles demonstrated includes Cu-Ag, Cu-Pt, Au-Pt, Cu-Pb, and Co-Ni. We further demonstrate surface patterning using Cu-Ag alloys with precise control of the location and composition of each pixel. Additionally, combining the nanoparticle alloy synthesis method with scanning electrochemical cell microscopy (SECCM) allows for fast screening of electrocatalysts. The method is generally applicable for synthesizing metal nanoparticles that can be electrodeposited, which is important toward developing automated synthesis and screening systems for accelerated material discovery in electrocatalysis.

Keywords: automated synthesis; electrodeposition; nanoparticle alloys; nanopipet; scanning electrochemical cell microscopy.

PubMed Disclaimer

LinkOut - more resources