Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 Jun;44(6):1101-9.

[Transhydrogenase as an additional site of energy accumulation in the E. coli respiratory chain]

[Article in Russian]
  • PMID: 37931

[Transhydrogenase as an additional site of energy accumulation in the E. coli respiratory chain]

[Article in Russian]
A V Chetkauskaite et al. Biokhimiia. 1979 Jun.

Abstract

NAD+ reduction catalyzed by transhydrogenase (EC 1.6.1.1) from E. coli membrane particles at the expense of NADPH oxidation is coupled with phenyldicarbaundecaborate (PCB-) absorption by the particles. This process is inhibited by oxidative phosphorylation protonophorous uncouplers and by equilibration of concentrations of the substrates and products of the transhydrogenase reaction. Elimination of the water-soluble part of membrane ATPase results in the inhibition of PCB- absorption at the expense of the transhydrogenase reaction energy. Treatment of the particles by dicyclohexyl carbodiimide increases the transhydrogenase-coupled absorption of PCB-. The transhydrogenase-induced increase of pPCB in the suspension of particles is directly correlated with the ratio of ([NADPH].[NAD+])/([NADP+].[NADH]). When this value is equal to 1, no energy-dependent increase of pPCB was observed. NADP+ reduction at the expense of NADH oxidation leads to a decrease in the amount of PCB- absorbed by the particles at the expense of ATP hydrolysis energy. The experimental data suggest that NADPH oxidation in the course of the transhydrogenase reaction is coupled with the formation of a membrane potential with a positive charge localized inside the particles.

PubMed Disclaimer

Similar articles