A dataset for benchmarking Neotropical anuran calls identification in passive acoustic monitoring
- PMID: 37932332
- PMCID: PMC10628131
- DOI: 10.1038/s41597-023-02666-2
A dataset for benchmarking Neotropical anuran calls identification in passive acoustic monitoring
Abstract
Global change is predicted to induce shifts in anuran acoustic behavior, which can be studied through passive acoustic monitoring (PAM). Understanding changes in calling behavior requires automatic identification of anuran species, which is challenging due to the particular characteristics of neotropical soundscapes. In this paper, we introduce a large-scale multi-species dataset of anuran amphibians calls recorded by PAM, that comprises 27 hours of expert annotations for 42 different species from two Brazilian biomes. We provide open access to the dataset, including the raw recordings, experimental setup code, and a benchmark with a baseline model of the fine-grained categorization problem. Additionally, we highlight the challenges of the dataset to encourage machine learning researchers to solve the problem of anuran call identification towards conservation policy. All our experiments and resources have been made available at https://soundclim.github.io/anuraweb/ .
© 2023. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures







References
-
- Sugai LSM, Silva TSF, Ribeiro JW, Jr, Llusia D. Terrestrial passive acoustic monitoring: review and perspectives. BioScience. 2019;69:15–25. doi: 10.1093/biosci/biy147. - DOI
-
- Gibb R, Browning E, Glover-Kapfer P, Jones KE. Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring. Methods Ecol. Evol. 2019;10:169–185. doi: 10.1111/2041-210X.13101. - DOI
-
- Beery S. Scaling Biodiversity Monitoring for the Data Age. XRDS Crossroads ACM Mag. Stud. 2021;27:14–18. doi: 10.1145/3466857. - DOI
-
- Hardt, M. & Recht, B. Patterns, predictions, and actions: Foundations of machine learning. (Princeton University Press, 2022).
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources