From beasts to bytes: Revolutionizing zoological research with artificial intelligence
- PMID: 37933101
- PMCID: PMC10802096
- DOI: 10.24272/j.issn.2095-8137.2023.263
From beasts to bytes: Revolutionizing zoological research with artificial intelligence
Abstract
Since the late 2010s, Artificial Intelligence (AI) including machine learning, boosted through deep learning, has boomed as a vital tool to leverage computer vision, natural language processing and speech recognition in revolutionizing zoological research. This review provides an overview of the primary tasks, core models, datasets, and applications of AI in zoological research, including animal classification, resource conservation, behavior, development, genetics and evolution, breeding and health, disease models, and paleontology. Additionally, we explore the challenges and future directions of integrating AI into this field. Based on numerous case studies, this review outlines various avenues for incorporating AI into zoological research and underscores its potential to enhance our understanding of the intricate relationships that exist within the animal kingdom. As we build a bridge between beast and byte realms, this review serves as a resource for envisioning novel AI applications in zoological research that have not yet been explored.
2010年以来,包括机器学习在内的人工智能,在深度学习的推动下成为了一种重要的工具,用于提升计算机视觉、自然语言处理和语音识别的准确率,并在变革动物学研究方面发挥了重要作用。该文概述了人工智能在动物学研究中的主要任务、核心模型、数据集和其在动物分类和资源保护、行为、发育、遗传和进化、繁殖和健康、疾病模型以及古生物学中的应用。此外,我们还探讨了将人工智能整合到这一领域中的挑战和未来方向。通过大量的案例研究,我们发现人工智能在动物研究中有着巨大的潜力,可以帮助我们更好地理解动物世界内部复杂关系。当我们在动物学和人工智能领域之间架起一座桥梁时,这篇综述为我们设想尚未探索的动物学研究中的新型人工智能应用提供了资源。.
Keywords: Animal science; Behavior analysis; Biomolecular sequences analysis; Classification model; Data extraction.
Conflict of interest statement
The authors declare that they have no competing interests.
Figures
Similar articles
-
Revolutionizing Digital Pathology With the Power of Generative Artificial Intelligence and Foundation Models.Lab Invest. 2023 Nov;103(11):100255. doi: 10.1016/j.labinv.2023.100255. Epub 2023 Sep 26. Lab Invest. 2023. PMID: 37757969 Review.
-
Revolutionizing Pulmonary Diagnostics: A Narrative Review of Artificial Intelligence Applications in Lung Imaging.Cureus. 2024 Apr 5;16(4):e57657. doi: 10.7759/cureus.57657. eCollection 2024 Apr. Cureus. 2024. PMID: 38707160 Free PMC article. Review.
-
Artificial Intelligence in Spinal Imaging: Current Status and Future Directions.Int J Environ Res Public Health. 2022 Sep 16;19(18):11708. doi: 10.3390/ijerph191811708. Int J Environ Res Public Health. 2022. PMID: 36141981 Free PMC article. Review.
-
The Use of Artificial Intelligence and Machine Learning in Surgery: A Comprehensive Literature Review.Am Surg. 2023 May;89(5):1980-1988. doi: 10.1177/00031348211065101. Epub 2021 Dec 27. Am Surg. 2023. PMID: 34958252 Review.
-
Artificial intelligence in clinical applications for lung cancer: diagnosis, treatment and prognosis.Clin Chem Lab Med. 2022 Jun 30;60(12):1974-1983. doi: 10.1515/cclm-2022-0291. Print 2022 Nov 25. Clin Chem Lab Med. 2022. PMID: 35771735 Review.
Cited by
-
Study of tree shrew biology and models: A booming and prosperous field for biomedical research.Zool Res. 2024 Jul 18;45(4):877-909. doi: 10.24272/j.issn.2095-8137.2024.199. Zool Res. 2024. PMID: 39004865 Free PMC article. Review.
-
EUP: Enhanced cross-species prediction of ubiquitination sites via a conditional variational autoencoder network based on ESM2.PLoS Comput Biol. 2025 Jul 16;21(7):e1013268. doi: 10.1371/journal.pcbi.1013268. eCollection 2025 Jul. PLoS Comput Biol. 2025. PMID: 40668800 Free PMC article.
-
ESM2_AMP: an interpretable framework for protein-protein interactions prediction and biological mechanism discovery.Brief Bioinform. 2025 Jul 2;26(4):bbaf434. doi: 10.1093/bib/bbaf434. Brief Bioinform. 2025. PMID: 40874821 Free PMC article.
-
Interpretable feature extraction and dimensionality reduction in ESM2 for protein localization prediction.Brief Bioinform. 2024 Jan 22;25(2):bbad534. doi: 10.1093/bib/bbad534. Brief Bioinform. 2024. PMID: 38279650 Free PMC article.
References
-
- Abinaya NS, Susan D, Kumar SR Naive Bayesian fusion based deep learning networks for multisegmented classification of fishes in aquaculture industries. Ecological Informatics. 2021;61:101248. doi: 10.1016/j.ecoinf.2021.101248. - DOI
-
- Achour B, Belkadi M, Filali I, et al Image analysis for individual identification and feeding behaviour monitoring of dairy cows based on Convolutional Neural Networks (CNN) Biosystems Engineering. 2020;198:31–49. doi: 10.1016/j.biosystemseng.2020.07.019. - DOI
-
- Ahmad A, Asif M, Ali SR Review paper on shallow learning and deep learning methods for network security. International Journal of Scientific Research in Computer Science and Engineering. 2018;6(5):45–54. doi: 10.26438/ijsrcse/v6i5.4554. - DOI
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials