Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Dec 12;68(24).
doi: 10.1088/1361-6560/ad0a5a.

Deep learning for fast super-resolution ultrasound microvessel imaging

Affiliations

Deep learning for fast super-resolution ultrasound microvessel imaging

Shunyao Luan et al. Phys Med Biol. .

Abstract

Objective. Ultrasound localization microscopy (ULM) enables microvascular reconstruction by localizing microbubbles (MBs). Although ULM can obtain microvascular images that are beyond the ultimate resolution of the ultrasound (US) diffraction limit, it requires long data processing time, and the imaging accuracy is susceptible to the density of MBs. Deep learning (DL)-based ULM is proposed to alleviate these limitations, which simulated MBs at low-resolution and mapped them to coordinates at high-resolution by centroid localization. However, traditional DL-based ULMs are imprecise and computationally complex. Also, the performance of DL is highly dependent on the training datasets, which are difficult to realistically simulate.Approach. A novel architecture called adaptive matching network (AM-Net) and a dataset generation method named multi-mapping (MMP) was proposed to overcome the above challenges. The imaging performance and processing time of the AM-Net have been assessed by simulation andin vivoexperiments.Main results. Simulation results show that at high density (20 MBs/frame), when compared to other DL-based ULM, AM-Net achieves higher localization accuracy in the lateral/axial direction.In vivoexperiment results show that the AM-Net can reconstruct ∼24.3μm diameter micro-vessels and separate two ∼28.3μm diameter micro-vessels. Furthermore, when processing a 128 × 128 pixels image in simulation experiments and an 896 × 1280 pixels imagein vivoexperiment, the processing time of AM-Net is ∼13 s and ∼33 s, respectively, which are 0.3-0.4 orders of magnitude faster than other DL-based ULM.Significance. We proposes a promising solution for ULM with low computing costs and high imaging performance.

Keywords: deep learning; microbubble localization; super-resolution ultrasound imaging; ultrasound localization microscopy.

PubMed Disclaimer

Publication types

LinkOut - more resources