Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Dec:180:105241.
doi: 10.1016/j.ijmedinf.2023.105241. Epub 2023 Oct 20.

Machine learning in medication prescription: A systematic review

Affiliations
Free article

Machine learning in medication prescription: A systematic review

Alexa Iancu et al. Int J Med Inform. 2023 Dec.
Free article

Abstract

Background: Medication prescription is a complex process that could benefit from current research and development in machine learning through decision support systems. Particularly pediatricians are forced to prescribe medications "off-label" as children are still underrepresented in clinical studies, which leads to a high risk of an incorrect dose and adverse drug effects.

Methods: PubMed, IEEE Xplore and PROSPERO were searched for relevant studies that developed and evaluated well-performing machine learning algorithms following the PRISMA statement. Quality assessment was conducted in accordance with the IJMEDI checklist. Identified studies were reviewed in detail, including the required variables for predicting the correct dose, especially of pediatric medication prescription.

Results: The search identified 656 studies, of which 64 were reviewed in detail and 36 met the inclusion criteria. According to the IJMEDI checklist, five studies were considered to be of high quality. 19 of the 36 studies dealt with the active substance warfarin. Overall, machine learning algorithms based on decision trees or regression methods performed superior regarding their predictive power than algorithms based on neural networks, support vector machines or other methods. The use of ensemble methods like bagging or boosting generally enhanced the accuracy of the dose predictions. The required input and output variables of the algorithms were considerably heterogeneous and differ strongly among the respective substance.

Conclusions: By using machine learning algorithms, the prescription process could be simplified and dosing correctness could be enhanced. Despite the heterogenous results among the different substances and cases and the lack of pediatric use cases, the identified approaches and required variables can serve as an excellent starting point for further development of algorithms predicting drug doses, particularly for children. Especially the combination of physiologically-based pharmacokinetic models with machine learning algorithms represents a great opportunity to enhance the predictive power and accuracy of the developed algorithms.

Keywords: Electronic medical records (EMR); Machine Learning (ML); Medication prescription.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

Publication types

LinkOut - more resources