Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Nov 9;195(12):1436.
doi: 10.1007/s10661-023-11988-y.

Soil microbes: a natural solution for mitigating the impact of climate change

Affiliations
Review

Soil microbes: a natural solution for mitigating the impact of climate change

Aradhna Kumari et al. Environ Monit Assess. .

Abstract

Soil microbes are microscopic organisms that inhabit the soil and play a significant role in various ecological processes. They are essential for nutrient cycling, carbon sequestration, and maintaining soil health. Importantly, soil microbes have the potential to sequester carbon dioxide (CO2) from the atmosphere through processes like carbon fixation and storage in organic matter. Unlocking the potential of microbial-driven carbon storage holds the key to revolutionizing climate-smart agricultural practices, paving the way for sustainable productivity and environmental conservation. A fascinating tale of nature's unsung heroes is revealed by delving into the realm of soil microbes. The guardians of the Earth are these tiny creatures that live beneath our feet and discreetly work their magic to fend off the effects of climate change. These microbes are also essential for plant growth enhancement through their roles in nutrient uptake, nitrogen fixation, and synthesis of growth-promoting chemicals. By understanding and managing soil microbial communities, it is possible to improve soil health, soil water-holding capacity, and promote plant growth in agricultural and natural ecosystems. Added to it, these microbes play an important role in biodegradation, bioremediation of heavy metals, and phytoremediation, which in turn helps in treating the contaminated soils. Unfortunately, climate change events affect the diversity, composition, and metabolism of these microbes. Unlocking the microbial potential demands an interdisciplinary endeavor spanning microbiology, ecology, agronomy, and climate science. It is a call to arms for the scientific community to recognize soil microbes as invaluable partners in the fight against climate change. By implementing data-driven land management strategies and pioneering interventions, we possess the means to harness their capabilities, paving the way for climate mitigation, sustainable agriculture, and promote ecosystem resilience in the imminent future.

Keywords: Carbon sequestration; Climatic variables; Microbial diversity; Soil ecosystem; Soil health; Soil microbes.

PubMed Disclaimer

References

    1. AbdElgawad, H., Abuelsoud, W., Madany, M. M. Y., Selim, S., Zinta, G., Mousa, A. S. M., & Hozzein, W. N. (2020). Actinomycetes enrich soil rhizosphere and improve seed quality as well as productivity of legumes by boosting nitrogen availability and metabolism. Biomolecules, 10(12), 1675. https://doi.org/10.3390/biom10121675 - DOI
    1. Alori, E. T., Glick, B. R., & Babalola, O. O. (2017). Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology, 8, 258916. https://doi.org/10.3389/fmicb.2017.00971 - DOI
    1. Armada, E., Azcon, R., Lopez-Castillo, O. M., Calvo-Polanco, M., & Ruiz-Lozano, J. M. (2015). Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions. Plant Physiology and Biochemistry, 90, 64–74. https://doi.org/10.1016/j.plaphy.2015.03.004 - DOI
    1. Balamurugan, A., Jayanthi, R., Nepolean, P., Pallavi, R. V., & Premkumar, R. (2011). Studies on cellulose degrading bacteria in tea garden soils. African Journal of Plant Science, 5(1), 22–27.
    1. Bardgett, R. D., & van der Putten, W. H. (2014). Belowground biodiversity and ecosystem functioning. Nature, 515(7528), 505–511. - DOI

LinkOut - more resources