Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Nov 14;159(18):184104.
doi: 10.1063/5.0173666.

Simultaneous identification of strong and weak interactions with Pauli energy, Pauli potential, Pauli force, and Pauli charge

Affiliations

Simultaneous identification of strong and weak interactions with Pauli energy, Pauli potential, Pauli force, and Pauli charge

Wenbiao Zhang et al. J Chem Phys. .

Abstract

Strong and weak interatomic interactions in chemical and biological systems are ubiquitous, yet how to identify them on a unified theoretical foundation is still not well established. Recently, we proposed employing Pauli energy-based indexes, such as strong covalent interaction and bonding and noncovalent interaction indexes, in the framework of density functional theory for the purpose. In this work, we extend our previous theoretical work by directly employing Pauli energy, Pauli potential, Pauli force, and Pauli charge to simultaneously identify both strong covalent bonding and weak noncovalent interactions. Our results from this work elucidate that using their signature isosurfaces, we can identify different types of interactions, either strong or weak, including single, double, triple, and quadruple covalent bonds, ionic bond, metallic bond, hydrogen bonding, and van der Waals interaction. We also discovered strong linear correlations between Pauli energy derived quantities and different covalent bond orders. These qualitative and quantitative results from our present study solidify the viewpoint that a unified approach to simultaneously identify both strong and weak interactions is possible. In our view, this work signifies one step forward towards the goal of establishing a density-based theory of chemical reactivity in density functional theory.

PubMed Disclaimer