Shallow subtidal marine benthic communities of Nachvak Fjord, Nunatsiavut, Labrador: A glimpse into species composition and drivers of their distribution
- PMID: 37943756
- PMCID: PMC10635441
- DOI: 10.1371/journal.pone.0293702
Shallow subtidal marine benthic communities of Nachvak Fjord, Nunatsiavut, Labrador: A glimpse into species composition and drivers of their distribution
Abstract
Marine fjords along the northern Labrador coast of Arctic Canada are influenced by freshwater, nutrients, and sediment inputs from ice fields and rivers. These ecosystems, further shaped by both Atlantic and Arctic water masses, are important habitats for fishes, marine mammals, seabirds, and marine invertebrates and are vital to the Labrador Inuit who have long depended on these areas for sustenance. Despite their ecological and socio-cultural importance, these marine ecosystems remain largely understudied. Here we conducted the first quantitative underwater scuba surveys, down to 12 m, of the nearshore marine ecology of Nachvak Fjord, which is surrounded by Torngat Mountains National Park located in Nunatsiavut, the Indigenous lands claim region of northeastern Canada. Our goal was to provide the Nunatsiavut Government with a baseline of the composition and environmental influences on the subtidal community in this isolated region as they work towards the creation of an Indigenous-led National Marine Conservation Area that includes Nachvak Fjord. We identified four major benthic habitat types: (1) boulders (2) rocks with sediment, (3) sediment with rocks, and (4) unconsolidated sediments, including sand, gravel, and cobble. Biogenic cover (e.g., kelp, coralline algae, and sediment) explained much of the variability in megabenthic invertebrate community structure. The kelp species Alaria esculenta, Saccharina latissima, and Laminaria solidungula dominated the boulder habitat outside of the fjord covering 35%, 13%, and 11% of the sea floor, respectively. In contrast, the middle and inner portions of the fjord were devoid of kelp and dominated by encrusting coralline algae. More diverse megabenthic invertebrate assemblages were detected within the fjord compared to the periphery. Fish assemblages were depauperate overall with the shorthorn sculpin, Myoxocephalus scorpius, and the Greenland cod, Gadus ogac, dominating total fish biomass contributing 64% and 30%, respectively. Understanding the composition and environmental influences within this fjord ecosystem not only contributes towards the protection of this ecological and culturally important region but serves as a baseline in a rapidly changing climatic region.
Copyright: © 2023 Friedlander et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Conflict of interest statement
We received funding from commercial sources: National Geographic Society. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. This does not alter our adherence to PLOS ONE policies on sharing data and materials.
Figures
References
-
- Grebmeier JM, Frey KE, Cooper LW, Kędra M. Trends in benthic macrofaunal populations, seasonal sea ice persistence, and bottom water temperatures in the Bering Strait region. Oceanography. 2018;31: 136–151.
-
- Oceans North Conservation Society, World Wildlife Fund Canada, Ducks Unlimited Canada. Canada’s Arctic Marine Atlas. Ottawa, Canada: Oceans North Conservation Society; 2018.
-
- Monika, Moritz C, Choy ES, David C, Degen R, Duerksen S, et al. Status and trends in the structure of Arctic benthic food webs. Polar Research. 2015;34: 23775. doi: 10.3402/polar.v34.23775 - DOI
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
