Bladder Cancer and Artificial Intelligence: Emerging Applications
- PMID: 37945103
- PMCID: PMC10697017
- DOI: 10.1016/j.ucl.2023.07.002
Bladder Cancer and Artificial Intelligence: Emerging Applications
Abstract
Bladder cancer is a common and heterogeneous disease that poses a significant burden to the patient and health care system. Major unmet needs include effective early detection strategy, imprecision of risk stratification, and treatment-associated morbidities. The existing clinical paradigm is imprecise, which results in missed tumors, suboptimal therapy, and disease progression. Artificial intelligence holds immense potential to address many unmet needs in bladder cancer, including early detection, risk stratification, treatment planning, quality assessment, and outcome prediction. Despite recent advances, extensive work remains to affirm the efficacy of artificial intelligence as a decision-making tool for bladder cancer management.
Keywords: AI-assisted diagnosis; Artificial intelligence; Bladder cancer; Deep learning; Image processing; Outcome prediction; Treatment planning; Urology.
Published by Elsevier Inc.
Figures


Similar articles
-
Artificial intelligence: A promising frontier in bladder cancer diagnosis and outcome prediction.Crit Rev Oncol Hematol. 2022 Mar;171:103601. doi: 10.1016/j.critrevonc.2022.103601. Epub 2022 Jan 19. Crit Rev Oncol Hematol. 2022. PMID: 35065220 Review.
-
Applications of artificial intelligence in urologic oncology.Investig Clin Urol. 2024 May;65(3):202-216. doi: 10.4111/icu.20230435. Investig Clin Urol. 2024. PMID: 38714511 Free PMC article. Review.
-
The use of artificial intelligence for the diagnosis of bladder cancer: a review and perspectives.Curr Opin Urol. 2021 Jul 1;31(4):397-403. doi: 10.1097/MOU.0000000000000900. Curr Opin Urol. 2021. PMID: 33978604 Review.
-
Bladder cancer in the time of machine learning: Intelligent tools for diagnosis and management.Urologia. 2021 May;88(2):94-102. doi: 10.1177/0391560320987169. Epub 2021 Jan 5. Urologia. 2021. PMID: 33402061 Review.
-
A Fully Automated Artificial Intelligence System to Assist Pathologists' Diagnosis to Predict Histologically High-grade Urothelial Carcinoma from Digitized Urine Cytology Slides Using Deep Learning.Eur Urol Oncol. 2024 Apr;7(2):258-265. doi: 10.1016/j.euo.2023.11.009. Epub 2023 Dec 7. Eur Urol Oncol. 2024. PMID: 38065702
Cited by
-
Optimizing cystoscopy and TURBT: enhanced imaging and artificial intelligence.Nat Rev Urol. 2025 Jan;22(1):46-54. doi: 10.1038/s41585-024-00904-9. Epub 2024 Jul 9. Nat Rev Urol. 2025. PMID: 38982304 Free PMC article. Review.
-
Artificial intelligence application in the diagnosis and treatment of bladder cancer: advance, challenges, and opportunities.Front Oncol. 2024 Nov 7;14:1487676. doi: 10.3389/fonc.2024.1487676. eCollection 2024. Front Oncol. 2024. PMID: 39575423 Free PMC article. Review.
-
Revealing the mechanisms of RAC3 in tumor aggressiveness, the immunotherapy response, and drug resistance in bladder cancer.Front Oncol. 2024 Sep 16;14:1466319. doi: 10.3389/fonc.2024.1466319. eCollection 2024. Front Oncol. 2024. PMID: 39351351 Free PMC article.
-
Recent Advances in Artificial Intelligence for Precision Diagnosis and Treatment of Bladder Cancer: A Review.Ann Surg Oncol. 2025 Aug;32(8):6173-6184. doi: 10.1245/s10434-025-17228-6. Epub 2025 Apr 12. Ann Surg Oncol. 2025. PMID: 40221553 Review.
-
ASO Author Reflections: Artificial Intelligence in Bladder Cancer-Transforming Diagnosis and Treatment Paradigms.Ann Surg Oncol. 2025 Aug;32(8):6189-6190. doi: 10.1245/s10434-025-17538-9. Epub 2025 May 28. Ann Surg Oncol. 2025. PMID: 40437334 No abstract available.
References
-
- Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. CA Cancer J Clin 2022;72(1):7–33. - PubMed
-
- Sylvester RJ, Van Der Meijden APM, Oosterlinck W, et al. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol 2006;49(3):466–77. - PubMed
-
- Chang SS, Boorjian SA, Chou R, et al. Diagnosis and treatment of non-muscle invasive bladder cancer: AUA/SUO Guideline. J Urol 2016;196(4):1021–9. - PubMed
-
- Yeung C, Dinh T, Lee J. The health economics of bladder cancer: an updated review of the published literature. Pharmacoeconomics 2014;32(11):1093–104. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical