Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025;65(3):494-506.
doi: 10.1080/10408398.2023.2276883. Epub 2023 Nov 10.

Interactions between dietary cholesterol and intestinal flora and their effects on host health

Affiliations
Review

Interactions between dietary cholesterol and intestinal flora and their effects on host health

Yan Liu et al. Crit Rev Food Sci Nutr. 2025.

Abstract

The interactions between dietary cholesterol and intestinal microbiota strongly affect host health. In recent years, relevant studies have greatly advanced this field and need to be summarized to deepen the understanding of dietary cholesterol-intestinal microbiota interactions and their effects on host health. This review covers the most recent frontiers on the effects of dietary cholesterol on the intestinal microbiota and its metabolites, the metabolism of cholesterol by the intestinal microbiota, and the effects of the interactions on host health. Several animal-feeding studies reported that dietary cholesterol altered different intestinal microbiota in the body, while mainly causing alterations in intestinal microbial metabolites such as bile acids, short-chain fatty acids, and tryptophan derivatives. Alterations in these metabolites may be a novel mechanism mediating cholesterol-related diseases. The cholesterol microbial metabolite, coprostanol, has a low absorption rate and is excreted in the feces. Thus, microbial conversion of cholesterol-to-coprostanol may be an important way of cholesterol-lowering by the organism. Cholesterol-3-sulfate is a recently discovered microbial metabolite of cholesterol, mainly metabolized by Bacteroides containing the Bt_0416 gene. Its effects on host health have been preliminarily characterized and are mainly related to immune modulation and repair of the intestinal epithelium.

Keywords: Microbial metabolism; cholesterol sulfate; coprostanol; gut microbiota.

PubMed Disclaimer

MeSH terms

LinkOut - more resources