Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Nov 24;25(46):8372-8376.
doi: 10.1021/acs.orglett.3c03511. Epub 2023 Nov 10.

Cobalt(I)-Catalyzed (3 + 2 + 2) Cycloaddition between Alkylidenecyclopropanes, Alkynes, and Alkenes

Affiliations

Cobalt(I)-Catalyzed (3 + 2 + 2) Cycloaddition between Alkylidenecyclopropanes, Alkynes, and Alkenes

Eduardo Da Concepción et al. Org Lett. .

Abstract

Cobalt(I) catalysts equipped with bisphosphine ligands can be used to promote formal (3 + 2 + 2) intramolecular cycloadditions of enynylidenecyclopropanes of type 1. The method provides synthetically appealing 5,7,5-fused tricyclic systems in good yields and with complete diastereo- and chemoselectivity. Interestingly, its scope differs from that of previously reported annulations based on precious metal catalysts, specifically rhodium and palladium. Noticeably, density functional theory calculations confirm that the mechanism of the reaction is also different from those proposed for these other catalysts.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Previously Developed Related Intramolecular Cycloadditions of ACPs and This Work
Scheme 2
Scheme 2. Preliminary Tests Using Diyne 1a
Scheme 3
Scheme 3. Scope of the Co-Catalyzed (3 + 2 + 2) Annulation
Conditions: 1, CoBr2 (10 mol %), dppp (12 mol %), and Zn (50 mol %)/ZnBr2 (20 mol %) were heated in DCE at 110 °C for 16 h.
Scheme 4
Scheme 4. Synthetic Manipulation of the Cycloadducts
Figure 1
Figure 1
Computed reaction profile for reaction model of ACP 1p and [Co(dppp)]+. Relative free energies (ΔG, at 298 K) are given in kcal/mol. All data were computed at the PCM(DCE)-B3LYP-D3/def2-SVP level.

References

    1. Lautens M.; Klute W.; Tam W. Transition Metal-Mediated Cycloaddition Reactions. Chem. Rev. 1996, 96, 49–92. 10.1021/cr950016l. - DOI - PubMed
    2. Gulías M.; López F.; Mascareñas J. L. Development of transition-metal-catalyzed cycloaddition reactions leading to polycarbocyclic systems. Pure Appl. Chem. 2011, 83, 495–506. 10.1351/PAC-CON-10-10-23. - DOI
    1. Aïssa C., Transition-Metal-Catalyzed Cycloaddition of Small Ring Compounds. In Comprehensive Organic Synthesis, 2nd ed.; Elsevier, 2014; Vol. 5, pp 1738–1771. 10.1016/B978-0-08-097742-3.00536-X - DOI
    2. Fumagalli G.; Stanton S.; Bower J. F. Recent Methodologies That Exploit C-C Single-Bond Cleavage of Strained Ring Systems by Transition Metal Complexes. Chem. Rev. 2017, 117, 9404–9432. 10.1021/acs.chemrev.6b00599. - DOI - PubMed
    3. Iwasawa N.Thermal and Metal-Induced [3 + 2] Cycloadditions. In Comprehensive Organic Synthesis, 2nd ed.; Elsevier, 2014; Vol. 5, pp 273–350.
    4. Mascareñas J. L.; Gulías M.; López F.. (4 + 3) Cycloadditions. In Comprehensive Organic Synthesis, 2nd ed.; Elsevier, 2014; Vol. 5, pp 595–655. 10.1016/B978-0-08-097742-3.00514-0 - DOI
    1. For reviews, see:

    2. Binger P.; Buch H. M. Cyclopropenes and Methylenecylopropanes as Multifunctional Reagents in Transition-Metal Catalyzed-Reactions. Top. Curr. Chem. 1987, 135, 77–151. 10.1007/3-540-16662-9_4. - DOI
    3. Gao Y.; Fu X.-F.; Yu Z.-X. Transition Metal-Catalyzed Cycloadditions of Cyclopropanes for the Synthesis of Carbocycles: C-C Activation in Cyclopropanes. Top. Curr. Chem. 2014, 346, 195–232. 10.1007/128_2014_527. - DOI - PubMed
    4. Brandi A.; Cicchi S.; Cordero F. M.; Goti A. Progress in the Synthesis and Transformations of Alkylidenecyclopropanes and Alkylidenecyclobutanes. Chem. Rev. 2014, 114, 7317–7420. 10.1021/cr400686j. - DOI - PubMed
    5. Souillart L.; Cramer N. Catalytic C-C Bond Activations via Oxidative Addition to Transition Metals. Chem. Rev. 2015, 115, 9410–9464. 10.1021/acs.chemrev.5b00138. - DOI - PubMed
    6. Yu L.-Z.; Chen K.; Zhu Z.-Z.; Shi M. Recent Advances in the Chemical Transformations of Functionalized Alkylidenecyclopropanes (FACPs). Chem. Commun. 2017, 53, 5935–5945. 10.1039/C7CC02596C. - DOI - PubMed
    1. Delgado A.; Rodríguez J. R.; Castedo L.; Mascareñas J. L. Palladium-catalyzed [3 + 2] intramolecular cycloaddition of alk-5-ynylidenecyclopropanes: a rapid, practical approach to bicyclo[3.3.0]octenes. J. Am. Chem. Soc. 2003, 125, 9282–9283. 10.1021/ja0356333. - DOI - PubMed
    2. Gulías M.; Duran J.; López F.; Castedo L.; Mascareñas J. L. Palladium-catalyzed [4 + 3] intramolecular cycloaddition of alkylidenecyclopropanes and dienes. J. Am. Chem. Soc. 2007, 129, 11026–11027. 10.1021/ja0756467. - DOI - PubMed
    3. Verdugo F.; Villarino L.; Duran J.; Gulias M.; Mascarenas J. L.; Lopez F. Enantioselective Palladium-Catalyzed 3C+2C and 4C+3C Intramolecular Cycloadditions of Alkylidenecyclopropanes. ACS Catal. 2018, 8, 6100–6105. 10.1021/acscatal.8b01296. - DOI
    4. Zhang D.-H.; Shi M. Rhodium(I)-catalyzed [3 + 2] intramolecular cycloaddition of alkylidenecyclopropane–propargylic esters. Tetrahedron Lett. 2012, 53, 487–490. 10.1016/j.tetlet.2011.11.084. - DOI
    5. Kim S.; Chung Y. K. Rhodium-Catalyzed Carbonylative [3 + 2 + 1] Cycloaddition of Alkyne-Tethered Alkylidenecyclopropanes to Phenols in the Presence of Carbon Monoxide. Org. Lett. 2014, 16, 4352–4355. 10.1021/ol5015224. - DOI - PubMed
    1. For Pd, see:

    2. Bhargava G.; Trillo B.; Araya M.; Lopez F.; Castedo L.; Mascarenas J. L. Palladium-catalyzed [3C+2C+2C] cycloaddition of enynylidenecyclopropanes: efficient construction of fused 5–7-5 tricyclic systems. Chem. Commun. 2010, 46, 270–272. 10.1039/B919258A. - DOI - PubMed
    3. For Rh, see:

    4. Evans P. A.; Inglesby P. A. Intermolecular rhodium-catalyzed [3 + 2 + 2] carbocyclization of alkenylidenecyclopropanes with activated alkynes: regio- and diastereoselective construction of cis-fused bicycloheptadienes. J. Am. Chem. Soc. 2008, 130, 12838–12839. 10.1021/ja803691p. - DOI - PubMed
    5. Evans P. A.; Inglesby P. A.; Kilbride K. A concise total synthesis of pyrovellerolactone using a rhodium-catalyzed [(3 + 2) + 2] carbocyclization reaction. Org. Lett. 2013, 15, 1798–1801. 10.1021/ol400165x. - DOI - PubMed
    6. Araya M.; Gulías M.; Fernández I.; Bhargava G.; Castedo L.; Mascareñas J. L.; López F. Rhodium-Catalyzed Intramolecular 3 + 2 + 2 Cycloadditions between Alkylidenecyclopropanes, Alkynes, and Alkenes. Chem. Eur. J. 2014, 20, 10255–10259. 10.1002/chem.201402473. - DOI - PubMed
    7. Evans P. A.; Negru D. E.; Shang D. Rhodium-catalyzed [(3 + 2) + 2] carbocyclization of alkynylidenecyclopropanes with substituted allenes: stereoselective construction of tri- and tetrasubstituted exocyclic olefins. Angew. Chem., Int. Ed. 2015, 54, 4768–4772. 10.1002/anie.201410857. - DOI - PubMed
    8. Yoshida T.; Tajima Y.; Kobayashi M.; Masutomi K.; Noguchi K.; Tanaka K. Rhodium-Catalyzed [3 + 2 + 2] and [2 + 2 + 2] Cycloadditions of Two Alkynes with Cyclopropylideneacetamides. Angew. Chem., Int. Ed. 2015, 54, 8241–8244. 10.1002/anie.201502505. - DOI - PubMed
    9. Evans P. A.; Dushnicky M. J.; Cho D.; Majhi J.; Choi S.; Pipaliya B. V.; Inglesby P. A.; Baik M.-H. Diastereoselective Rhodium-Catalyzed [(3 + 2 + 2)] Carbocyclization Reactions with Tethered Alkynylidenecyclopropanes: Synthesis of the Tremulane Sesquiterpene Natural Products. Asian J. Org. Chem. 2021, 10, 2174–2183. 10.1002/ajoc.202000482. - DOI
    10. Zhu Y.; Zheng J.; Evans P. A. Intramolecular Rhodium-Catalyzed [(3 + 2+2)] Carbocyclization Reactions with Dienylidenecyclopropanes: A Concise and Stereoselective Total Synthesis of the Sesquiterpene (+)-Zizaene. J. Am. Chem. Soc. 2023, 145, 3833–3838. 10.1021/jacs.2c10923. - DOI - PubMed