Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Feb 5:306:123630.
doi: 10.1016/j.saa.2023.123630. Epub 2023 Nov 7.

Tetraphenylethylene-based AIE nanoprobes for labeling lysosome by two-photon imaging in living cells

Affiliations

Tetraphenylethylene-based AIE nanoprobes for labeling lysosome by two-photon imaging in living cells

Tiantian Zhang et al. Spectrochim Acta A Mol Biomol Spectrosc. .

Abstract

Lysosomes are essential cellular organelles, serving vital functions in cellular metabolism and degradation. The design of specifically targeting lysosomes probes with aggregation-induced emission (AIE) characteristics using two-photon excitation techniques is significance and challenging work. Here we designed and synthesized two tetraphenylethylene (TPE)-based AIE fluorescence probes, naming TPE-Ma and TPE-Py, with TPE as the matrix and morpholine (Ma) or pyrrolidone (Py) as the targeting group. These probes exhibit a significant Stokes shift, low cytotoxicity, two-photo fluorescence imaging and lysosome-specific targeting capability ensuring their suitability for fluorescence imaging applications. To enhance the water solubility and cellular accumulation of TPE-Ma and TPE-Py in tumor cells, we employed a biocompatible polymer 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-mPEG2000) as a nanocarrier. By encapsulating TPE-Ma and TPE-Py within DSPE-mPEG2000, we successfully developed two AIE fluorescent nanoprobes known as DSPE@ TPE-Ma and DSPE@ TPE-Py. The results demonstrated that fluorescent nanoprobes DSPE@ TPE-Ma and DSPE@ TPE-Py possess excellent cell permeability, biocompatibility, superior photostability and specific targeting towards lysosomes in MCF-7 cells. Our findings highlight the potential of these fluorescent nanoprobes as effective tools for two-photon fluorescence imaging and targeted detection of lysosomes in cancer cells.

Keywords: AIE; Fluorescence probes; Fluorescent nanoprobes; Lysosomes; Lysosomes-targeted; Two-photon excitation.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

MeSH terms

LinkOut - more resources