Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Nov;309(2):e230681.
doi: 10.1148/radiol.230681.

Generative Adversarial Network-based Noncontrast CT Angiography for Aorta and Carotid Arteries

Affiliations

Generative Adversarial Network-based Noncontrast CT Angiography for Aorta and Carotid Arteries

Jinhao Lyu et al. Radiology. 2023 Nov.

Abstract

Background Iodinated contrast agents (ICAs), which are widely used in CT angiography (CTA), may cause adverse effects in humans, and their use is time-consuming and costly. Purpose To develop an ICA-free deep learning imaging model for synthesizing CTA-like images and to assess quantitative and qualitative image quality as well as the diagnostic accuracy of synthetic CTA (Syn-CTA) images. Materials and Methods A generative adversarial network (GAN)-based CTA imaging model was trained, validated, and tested on retrospectively collected pairs of noncontrast CT and CTA images of the neck and abdomen from January 2017 to June 2022, and further validated on an external data set. Syn-CTA image quality was evaluated using quantitative metrics. In addition, two senior radiologists scored the visual quality on a three-point scale (3 = good) and determined the vascular diagnosis. The validity of Syn-CTA images was evaluated by comparing the visual quality scores and diagnostic accuracy of aortic and carotid artery disease between Syn-CTA and real CTA scans. Results CT scans from 1749 patients (median age, 60 years [IQR, 50-68 years]; 1057 male patients) were included in the internal data set: 1137 for training, 400 for validation, and 212 for testing. The external validation set comprised CT scans from 42 patients (median age, 67 years [IQR, 59-74 years]; 37 male patients). Syn-CTA images had high similarity to real CTA images (normalized mean absolute error, 0.011 and 0.013 for internal and external test set, respectively; peak signal-to-noise ratio, 32.07 dB and 31.58 dB; structural similarity, 0.919 and 0.906). The visual quality of Syn-CTA and real CTA images was comparable (internal test set, P = .35; external validation set, P > .99). Syn-CTA showed reasonable to good diagnostic accuracy for vascular diseases (internal test set: accuracy = 94%, macro F1 score = 91%; external validation set: accuracy = 86%, macro F1 score = 83%). Conclusion A GAN-based model that synthesizes neck and abdominal CTA-like images without the use of ICAs shows promise in vascular diagnosis compared with real CTA images. Clinical trial registration no. NCT05471869 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Zhang and Turkbey in this issue.

PubMed Disclaimer

LinkOut - more resources