Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Nov 29;15(47):54986-54995.
doi: 10.1021/acsami.3c14082. Epub 2023 Nov 15.

Polypyrrole@CNT@PU Conductive Sponge-Based Triboelectric Nanogenerators for Human Motion Monitoring and Self-Powered Ammonia Sensing

Affiliations

Polypyrrole@CNT@PU Conductive Sponge-Based Triboelectric Nanogenerators for Human Motion Monitoring and Self-Powered Ammonia Sensing

Hong-Zhi Ma et al. ACS Appl Mater Interfaces. .

Abstract

Elastic sponges are ideal materials for triboelectric nanogenerators (TENGs) to harvest irregular and random mechanical energy from the environment. However, the conductive design of the elastic materials in TENGs often limits its applications. In this work, we have demonstrated that an elastic conductive sponge can be used as the triboelectric layer and electrode for TENGs. Such an elastic conductive sponge is prepared by a simple way of adsorbing multiwalled carbon nanotubes and monomers of pyrrole to grow conductive polypyrroles on the surface of an elastic polyurethane (PU) sponge. Due to the porous structure of the PU sponge and the conductive multiwalled carbon nanotubes (MWCNTs), PPy on the surface of PU could provide a large contact area to improve the output performance of TENGs, and the conductive sponge-based TENG could generate an output of open-circuit voltage of 110 V or a short-circuit current of 12 μA, respectively. The good flexibility of the conductive PU sponge makes the TENG harvest the kinetic energy of disordered motion with different amplitudes, allowing for human motion monitoring. Furthermore, the porous structure of PU and the synergistic effects of PPy and MWCNTs enable the conductive sponge to sense NH3 as a self-powered NH3 sensor. This work offers a simple way to construct a flexible TENG system for random mechanical energy harvesting, human motion monitoring, and self-powered NH3 sensing.

Keywords: conductive sponge; energy harvesting; human motion monitoring; self-powered NH3 sensing; triboelectric nanogenerator.

PubMed Disclaimer

LinkOut - more resources