Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Dec;324(6098):699-702.
doi: 10.1038/324699a0.

Site-directed mutagenesis reveals role of mobile arginine residue in lactate dehydrogenase catalysis

Site-directed mutagenesis reveals role of mobile arginine residue in lactate dehydrogenase catalysis

A R Clarke et al. Nature. 1986 Dec.

Abstract

The binding of substrates to lactate dehydrogenases induces a marked rearrangement of the protein structure in which a 'loop' of polypeptide (residues 98-110) closes over the active site of the enzyme. In this rearrangement, arginine 109 (a basic residue conserved in all known lactate dehydrogenase sequences and in the homologous malate dehydrogenases) moves 0.8 nm from a position in the solvent to one in the active site where its guanidinium group resides within hydrogen bonding distance of both the reactive carbonyl of pyruvate and imidazole ring of the catalytic histidine 195 (see Fig. 1). Whilst this feature of the enzyme has been commented upon previously, the function of this mobile arginine residue during catalysis has not been tested experimentally. The advent of protein engineering has now enabled us to define the role of this basic residue by substituting it with the neutral glutamine. Transient kinetic and equilibrium studies of the mutant enzyme indicate that arginine 109 enhances the polarization of the pyruvate carbonyl group in the ground state and stabilizes the transition state. The gross active-site structure of the enzyme is not altered by the mutation since an alternative catalytic function of the enzyme (rate of addition of sulphite to NAD+), which does not require hydride transfer, is insensitive to the arginine----glutamine substitution.

PubMed Disclaimer

Publication types

LinkOut - more resources