Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jan;103(1):5-12.
doi: 10.1177/00220345231201793. Epub 2023 Nov 15.

Clinically Oriented CBCT Periapical Lesion Evaluation via 3D CNN Algorithm

Affiliations

Clinically Oriented CBCT Periapical Lesion Evaluation via 3D CNN Algorithm

W T Fu et al. J Dent Res. 2024 Jan.

Abstract

Apical periodontitis (AP) is one of the most prevalent disorders in dentistry. However, it can be underdiagnosed in asymptomatic patients. In addition, the perioperative evaluation of 3-dimensional (3D) lesion volume is of great clinical relevance, but the required slice-by-slice manual delineation method is time- and labor-intensive. Here, for quickly and accurately detecting and segmenting periapical lesions (PALs) associated with AP on cone beam computed tomography (CBCT) images, we proposed and geographically validated a novel 3D deep convolutional neural network algorithm, named PAL-Net. On the internal 5-fold cross-validation set, our PAL-Net achieved an area under the receiver operating characteristic curve (AUC) of 0.98. The algorithm also improved the diagnostic performance of dentists with varying levels of experience, as evidenced by their enhanced average AUC values (junior dentists: 0.89-0.94; senior dentists: 0.91-0.93), and significantly reduced the diagnostic time (junior dentists: 69.3 min faster; senior dentists: 32.4 min faster). Moreover, our PAL-Net achieved an average Dice similarity coefficient over 0.87 (0.85-0.88), which is superior or comparable to that of other existing state-of-the-art PAL segmentation algorithms. Furthermore, we validated the generalizability of the PAL-Net system using multiple external data sets from Central, East, and North China, showing that our PAL-Net has strong robustness. Our PAL-Net can help improve the diagnostic performance and speed of dentists working from CBCT images, provide clinically relevant volume information to dentists, and can potentially be applied in dental clinics, especially without expert-level dentists or radiologists.

Keywords: apical periodontitis; artificial intelligence; computer vision; deep learning; endodontics; machine learning.

PubMed Disclaimer

Conflict of interest statement

Declaration of Conflicting InterestsThe authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Publication types

MeSH terms

LinkOut - more resources