Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Dec 6;34(12):2864-2867.
doi: 10.1021/jasms.3c00323. Epub 2023 Nov 16.

Dimethylthiourea as a Quencher in Hydroxyl Radical Protein Footprinting Experiments

Affiliations

Dimethylthiourea as a Quencher in Hydroxyl Radical Protein Footprinting Experiments

Anter A Shami et al. J Am Soc Mass Spectrom. .

Abstract

Hydroxyl radical protein footprinting (HRPF) is a mass-spectrometry-based method for studying protein structures, interactions, conformations, and folding. This method is based on the irreversible labeling of solvent-exposed amino acid side chains by hydroxyl radicals. While catalase is commonly used as a quencher after the labeling of a protein by the hydroxyl radicals to efficiently remove the remaining hydrogen peroxide, it has some disadvantages. Catalase quenching adds a relatively high amount of protein to the sample, limiting the sensitivity of the method due to dynamic range issues and causing significant issues when dealing with more complex samples. We evaluated dimethylthiourea (DMTU) as a replacement for catalase in the quenching HRPF reactions. We observed that DMTU is highly effective at quenching HRPF oxidation. DMTU does not cause the background protein issues that catalase does, resulting in an increased number of protein identifications from complex mixtures. We recommend the replacement of catalase quenching with DMTU for all HRPF experiments.

PubMed Disclaimer

LinkOut - more resources