Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Feb;47(1):454-468.
doi: 10.1007/s10753-023-01928-w. Epub 2023 Nov 18.

Galectin-3 Mediates Endotoxin Internalization and Caspase-4/11 Activation in Tubular Epithelials and Macrophages During Sepsis and Sepsis-Associated Acute Kidney Injury

Affiliations

Galectin-3 Mediates Endotoxin Internalization and Caspase-4/11 Activation in Tubular Epithelials and Macrophages During Sepsis and Sepsis-Associated Acute Kidney Injury

Fengyun Wang et al. Inflammation. 2024 Feb.

Abstract

Besides being recognized by membrane receptor TLR4, lipopolysaccharide (LPS) can also be internalized into the cytosol and activate Caspase-4/11 pyroptotic pathways to further amplify inflammation in sepsis. The objective of this study was to investigate whether Galectin-3 (Gal3) could promote the uptake of LPS by governing RAGE or administering endocytosis, consequently activating Caspase 4/11 and mediating pyroptosis in sepsis-associated acute kidney injury (SA-AKI). By pinpointing Gal3, LPS, and EEA1 (endosome-marker) or LAMP1 (lysosome-marker) respectively, immunofluorescence discovered that Gal3 and LPS were mainly aggregated in early endosomes initially and translocated into lysosomes afterwards. In cells and animal models, Gal3 and the Caspase-4/11 pathways were simultaneously activated, and the overexpression of Gal3 could exacerbate pyroptosis, whereas inhibition of Gal3 or the knockdown of its expression could ameliorate pyroptosis, reduce the pathological changes of SA-AKI and improve the survival of the animals with SA-AKI. Silencing RAGE reduced pyroptosis in primary tubular epithelial cells (PTCs) activated by Gal3 and LPS but not in cells activated by Gal3 and outer membrane vesicles (with LPS inside), whereas pyroptosis in both was reduced by blockade of Gal3, indicating Gal3 promoted pyroptosis through both RAGE-dependent and RAGE-independent pathways. Our investigation further revealed a positive correlation between serum Gal3 and pyroptotic biomarkers IL-1 beta and IL-18 in patients with sepsis, and that serum Gal3 was an independent risk factor for mortality. Through our collective exploration, we unraveled the significant role of Gal3 in the internalization of LPS and the provocation of more intense pyroptosis, thus making it a vital pathogenic factor in SA-AKI and a possible therapeutic target. Gal3 enabled the internalization of endotoxin into endosomes and lysosomes via both RAGE-dependent (A) and RAGE-independent (B) pathways, leading to pyroptosis. The suppression of Gal3 curbed Caspase4/11 noncanonical inflammasomes and diminished sepsis and SA-AKI.

Keywords: Acute kidney injury; Caspase-4/11; Galectin-3; Lipopolysaccharide; Pyroptosis; Sepsis.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Lelubre, C., and J.L. Vincent. 2018. Mechanisms and treatment of organ failure in sepsis. Nature Reviews. Nephrology 14 (7): 417–427. - DOI - PubMed
    1. Opal, S.M., P.F. Laterre, B. Francois, S.P. LaRosa, D.C. Angus, J.P. Mira, X. Wittebole, T. Dugernier, D. Perrotin, M. Tidswell, et al. 2013. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: The ACCESS randomized trial. JAMA 309 (11): 1154–1162. - DOI - PubMed
    1. Rice, T.W., A.P. Wheeler, G.R. Bernard, J.L. Vincent, D.C. Angus, N. Aikawa, I. Demeyer, S. Sainati, N. Amlot, C. Cao, et al. 2010. A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis. Critical Care Medicine 38 (8): 1685–1694. - DOI - PubMed
    1. Kayagaki, N., I.B. Stowe, B.L. Lee, K. O’Rourke, K. Anderson, S. Warming, T. Cuellar, B. Haley, M. Roose-Girma, Q.T. Phung, et al. 2015. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526 (7575): 666–671. - DOI - PubMed
    1. Kayagaki, N., M.T. Wong, I.B. Stowe, S.R. Ramani, L.C. Gonzalez, S. Akashi-Takamura, K. Miyake, J. Zhang, W.P. Lee, A. Muszynski, et al. 2013. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341 (6151): 1246–1249. - DOI - PubMed

LinkOut - more resources