Application of Hydrogels in Cardiac Regeneration
- PMID: 37979080
- PMCID: PMC10703752
- DOI: 10.1007/s40119-023-00339-0
Application of Hydrogels in Cardiac Regeneration
Abstract
Myocardial infarction (MI) is a leading cause of death globally. Due to limited cardiac regeneration, infarcted myocardial tissue is gradually replaced by cardiac fibrosis, causing cardiac dysfunction, arrhythmia, aneurysm, free wall rupture, and sudden cardiac death. Thus, the development of effective methods to promote cardiac regeneration is extremely important for MI treatment. In recent years, hydrogels have shown promise in various methods for cardiac regeneration. Hydrogels can be divided into natural and synthetic types. Different hydrogels have different features and can be cross-linked in various ways. Hydrogels are low in toxicity and highly stable. Since they have good biocompatibility, biodegradability, and transformability, moderate mechanical properties, and proper elasticity, hydrogels are promising biomaterials for promoting cardiac regeneration. They can be used not only as scaffolds for migration of stem cells, but also as ideal carriers for delivery of drugs, genetic materials, stem cells, growth factors, cytokines, and small molecules. In this review, the application of hydrogels in cardiac regeneration during or post-MI is discussed in detail. Hydrogels open a promising new area in cardiac regeneration for treating MI.
Keywords: Cardiac regeneration; Drug delivery system; Hydrogel; Myocardial infarction; Stem cell.
© 2023. The Author(s).
Conflict of interest statement
Xuejing Yu has no conflicts of interest in this work and has nothing to disclose.
Figures
References
-
- Berry MF, Engler AJ, Woo YJ, Pirolli TJ, Bish LT, Jayasankar V, Morine KJ, Gardner TJ, Discher DE, Sweeney HL. Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am J Physiol Heart Circ Physiol. 2006;290:H2196–H2203. doi: 10.1152/ajpheart.01017.2005. - DOI - PubMed
-
- Hamad K, Kaseem M, Yang HW, Deri F, Ko YG. Properties and medical applications of polylactic acid: a review. DOAJ Express Polym Lett. 2015;9:435–455. doi: 10.3144/expresspolymlett.2015.42. - DOI
Publication types
LinkOut - more resources
Full Text Sources
