Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Nov 20;39(1):298.
doi: 10.1007/s00383-023-05585-w.

A novel mouse model of intestinal neuronal dysplasia: visualization of the enteric nervous system

Affiliations

A novel mouse model of intestinal neuronal dysplasia: visualization of the enteric nervous system

Naho Fujiwara et al. Pediatr Surg Int. .

Abstract

Purpose: Intestinal neuronal dysplasia (IND) is a congenital anomaly affecting gastrointestinal neural innervation, but the pathogenesis remains unclear. The homozygous Ncx/Hox11L.1 knockout (Ncx-/-) mice exhibit megacolon and enteric ganglia anomalies, resembling IND phenotypes. Sox10-Venus transgenic mouse were used to visualize enteric neural crest cells in real time. This study aims to establish a novel mouse model of Sox10-Venus+/Ncx-/- mouse to study the pathogenesis of IND.

Methods: Sox10-Venus+/Ncx-/- (Ncx-/-) (n = 8) mice and Sox10-Venus+/Ncx+/+ controls (control) (n = 8) were euthanized at 4-5 weeks old, and excised intestines were examined with fluorescence microscopy. Immunohistochemistry was performed on tissue sections with neural marker Tuj1.

Results: Ncx-/- mice exhibited dilated cecum and small intestine. Body weight of Ncx-/- mice was lower with higher ratio of small intestine length relative to body weight. The neural network (Sox10-Venus) was observed along the intestine wall in Ncx-/- and control mice without staining. Ectopic and increased expression of Tuj1 was observed in both small intestine and proximal colon of Ncx-/- mice.

Conclusion: This study has established a reliable animal model that exhibits characteristics similar to patients with IND. This novel mouse model can allow the easy visualization of ENS in a time- and cost-effective way to study the pathogenesis of IND.

Keywords: Enteric nervous system; Homozygous mutant of Ncx; Intestinal neuronal dysplasia; Sox10.

PubMed Disclaimer

Comment in

  • Letter to the Editor.
    Kapur RP. Kapur RP. Pediatr Surg Int. 2023 Dec 13;40(1):19. doi: 10.1007/s00383-023-05614-8. Pediatr Surg Int. 2023. PMID: 38086970 No abstract available.

References

    1. Kapur RP, Reyes-Mugica M (2019) Intestinal neuronal dysplasia type B: an updated review of a problematic diagnosis. Arch Pathol Lab Med 143:235–243. https://doi.org/10.5858/arpa.2017-0524-RA - DOI - PubMed
    1. Yamataka A, Hatano M, Kobayashi H, Wang K, Miyahara K, Sueyoshi N et al (2001) Intestinal neuronal dysplasia-like pathology in Ncx/Hox11L.1 gene-deficient mice. J Pediatr Surg 36:1293–1296. https://doi.org/10.1053/jpsu.2001.25797 - DOI - PubMed
    1. Meier-Ruge W (1971) Casuistic of colon disorder with symptoms of Hirschsprung’s disease (author’s transl). Verh Dtsch Ges Pathol 55:506–510 - PubMed
    1. Liu W, Zhou T, Tian J, Yu X, Ren C, Cao Z et al (2022) Role of GDNF, GFRα1 and GFAP in a bifidobacterium-intervention induced mouse model of intestinal neuronal dysplasia. Front Pediatr. https://doi.org/10.3389/fped.2021.795678 - DOI - PubMed - PMC
    1. Wang D, Gao N, Zhou T, Zhang Q, Wang J, Li A (2020) Effect of Neuroligin1 and Neurexin1 on the colonic motility in a mouse model of neuronal intestinal dysplasia. Gastroenterol Res Pract 2020:1–9. https://doi.org/10.1155/2020/9818652 - DOI

Grants and funding

LinkOut - more resources